Audio Toolbox™

Reference

<@

MATLAB&SIMULINK?

R2019%a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Reference Guide
© COPYRIGHT 2016 - 2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

March 2016 Online only New for Version 1.0 (Release 2016a)

September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps in Audio Toolbox

1]

Functions in Audio Toolbox

2|

System objects in Audio Toolbox

3|

Classes in Audio Toolbox

4

Blocks in Audio Toolbox

S|

iii

Apps in Audio Toolbox

1 Apps in Audio Toolbox

1-2

Audio Labeler

Define and visualize ground-truth labels

Description

The Audio Labeler app enables you to label ground-truth data at both the region level
and file level.

Using the app, you can:

* Create label definitions for consistent and fast labeling.
* Visualize the time-domain waveform during playback.

* Interactively specify labels at the file level and region level. You can specify regions by
drawing directly on the time-domain waveform.

* Record new audio to add to your dataset.

The app exports data as a LlabeledSignalSet object. You can use labeledSignalSet
to train a network, classifier, or analyze data and report statistics.

Open the Audio Labeler App

* MATLAB® toolstrip: On the Apps tab, under Signal Processing and
Communications, click the app icon.

* MATLAB command prompt: Enter audioLabeler.

Examples
. “Label Audio Using Audio Labeler”

Programmatic Use

audiolabeler opens the app, enabling you to label ground-truth data about audio.

Audio Labeler

See Also

audioDatastore | audioDeviceReader | audioDeviceWriter | labeledSignalSet
| signalLabelDefinition

Topics
“Label Audio Using Audio Labeler”

Introduced in R2018b

1-3

1 Apps in Audio Toolbox

1-4

Impulse Response Measurer

Measure impulse response of audio system

Description

The Impulse Response Measurer app enables you to acquire, analyze, and export
impulse response and frequency response measurements through a user interface.

Using this app, you can:
* Acquire impulse responses to create filters and generate models for offline

simulations.

* Determine whether audio devices (loudspeakers, for example) meet time and
frequency specifications.

* Optimize audio systems, such as automotive-acoustic systems, to match goal
specifications.

* Acquire accurate impulse response measurements for use in acoustic reporting.

Open the Impulse Response Measurer App

MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications,
click the app icon.

MATLAB Command prompt: Enter impulseResponseMeasurer.

Examples

Verify Input/Output Configuration

For large systems with multiple audio devices and multiple input and output channels,
tracking how reported devices and channels correspond to physical devices can be
difficult. The Impulse Response Measurer provides a level monitor so that you can
verify your audio I/O configuration.

Impulse Response Measurer

To open the level monitor, click Level Monitor, E
Y

Player Recorder
] 0 Audio Device:

. . ASIO4ALL v2
-10 - -10 -

=20 - =20 -

Player Channel
=30 - =30 -
A0 - A0 - der Channel

=50 -50 -

-G0 B0 - est Output

- - g &1 din
=70 - =70 - Fl:l_- AU

-80 - -80 - Output Level (dBFS

Choose a player and recorder channel, the test signal, and the output level. Verify that the
level reported by the recorder reacts appropriately to level changes output by the player.
Once you are satisfied that your system is configured correctly, close the level monitor
and begin the impulse response capture.

. “Impulse Response Measurer Walkthrough”

1-5

1 Apps in Audio Toolbox

Parameters

Method — Select excitation signal as MLS or swept sine wave
MLS (default) | Exponential Swept Sine

Select the excitation signal algorithm used to generate an impulse response
measurement:

MLS -- The maximum length sequence (MLS) technique is based on the excitation of
the acoustical space by a periodic pseudorandom signal. The impulse response is
obtained by circular cross-correlation between the measured output and the test tone.
For more details, see [2].

Exponential Swept Sine -- The swept sine measurement technique uses an
exponential time-growing frequency sweep as an output signal. The output signal is
recorded, and deconvolution is used to recover the impulse response from the swept
sine tone. For more details, see [1]. The swept sine technique enables you to modify
additional Advanced Settings to control the excitation signal. The advanced settings
apply per run:

* Sweep start frequency
* Sweep stop frequency

* Sweep duration
* End silence duration
The value of the End silence duration is read-only and depends on the Sweep

duration and Duration per Run (s): End silence duration = Duration per Run —
Sweep duration

References

[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."

Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of

1-6

Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246-262.

Impulse Response Measurer

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time
Partitioned Convolution on a DSP Board." Application of Signal Processing to
Audio and Acoustics, 2003 IEEE Workshop, pp. 71-74. IEEE, 2003.

See Also

System Objects
audioPlayerRecorder | reverberator | splMeter

Topics
“Impulse Response Measurer Walkthrough”

Introduced in R2018a

1-7

1 Apps in Audio Toolbox

1-8

Audio Test Bench

Debug, test, and tune audio plugin

Description

The Audio Test Bench provides a graphical interface through which you can develop,
debug, test, and tune your audio plugin in real time. You can interact with properties of
your audio plugin using associated parameter graphical widgets. See
audioPluginParameter for more information.

Using the Audio Test Bench, you can:

Debug your audio plugin.

Simulate your audio plugin as generated in a digital audio workstation (DAW).

* Visualize your processing with time-domain and frequency-domain scopes.

* Interactively synchronize MIDI controls to plugin properties.

* Run validation checks and generate VST plugins.

Develop and Test Features

Button Description
® Run Run your audio plugin in an audio stream loop using the specified
input and output configuration. You can tune parameters of your
audio processing algorithm in real time. The MATLAB command line
and objects used by the test bench are locked while the test bench
is running.
() Pause Pause audio stream loop. The MATLAB command line is released.
(appears Objects used by the test bench remain locked.
while test
bench runs)
> Step Forward |Call the processing function of your audio plugin one time in an
audio stream loop, with input and output specified by your input
and output configuration.

Audio Test Bench

Button Description

fm} |Stop Stop the audio stream loop. The MATLAB command line and objects
- used by the test bench are released.

) Reset Reset internal states of your audio plugin and set parameters to

their initial values.

View Source
Code

Open the source file of your audio plugin.

&) Synchronize |Start the configureMIDI user interface (UI) for your plugin object.
to MIDI
Controls
kL |Open the Call the visualize function of the object under test with no input
visualizer of [arguments. If your object under test does not define a visualize
the object function, then the K2+ button does not appear.
under test
See the audiopluginexample.VarSlopeBandpassFilter
plugin for an example of how to define the visualize function.
R Time Scope |Open an instance of dsp.TimeScope, which provides a time-
domain visualization of the output from your audio stream loop.
m Spectrum Open an instance of dsp.SpectrumAnalyzer, which provides a
Analyzer frequency-domain visualization of the output from your audio
stream loop.
% Generate VST |Open a Ul to validate and generate your plugin object. For Audio
2 Audio Toolbox System objects, the Audio Test Bench creates an
Plugin audioPlugin class using the createAudioPluginClass method
of the object. The created plugin class is used to generate a plugin
object. For more information, see validateAudioPlugin,
generateAudioPlugin, and the createAudioPluginClass
method of your System object™.
—. |Generate Generate a MATLAB script implementation of your audio test bench.
' |MATLAB
Script
©) Help Open MATLAB documentation for Audio Test Bench.

1-9

1 Apps in Audio Toolbox

1-10

Button

Description

&

Configure
Input

Open the input configuration UI. The UI options depend on your
choice of input to the audio stream loop. See the corresponding
documentation for your input choice:

* Audio File Reader -- dsp.AudioFileReader

* Audio Device Reader -- audioDeviceReader

* Audio Oscillator -- audioOscillator

* Wavetable Synthesizer -- wavetableSynthesizer

* Chirp Signal --dsp.Chirp

* Colored Noise -- dsp.ColoredNoise

Configure
Output

Open the output configuration UI. The UI options depend on
whether you choose Audio File Writer or Audio Device
Writer for the output from your audio stream loop. If you choose to
output Both, two dialog boxes open: one for the Audio File
Writer and one for the Audio Device Writer. For more
information, see dsp.AudioFileWriter and
audioDeviceWriter.

Open the Audio Test Bench App

MATLAB command prompt: Enter audioTestBench.

Examples
“Audio Test Bench Walkthrough”

Programmatic Use

audioTestBench pluginClass opens the Audio Test Bench for an instance of
pluginClass. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

Audio Test Bench

audioTestBench(pluginClassInstance) opens the Audio Test Bench for
pluginClassInstance, where pluginClassInstance is an instance of an audio
plugin class. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

audioTestBench ASTSystemObject opens the Audio Test Bench for an instance of a
compatible Audio Toolbox System object.

audioTestBench (ASTSystemObjectInstance) opens the Audio Test Bench for
ASTSystemObjectInstance, where ASTSystemObjectInstance is an instance of a
compatible Audio Toolbox System object.

audioTestBench(hostedPlugin) opens the Audio Test Bench for hostedPlugin,
where hostedPlugin is an object returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio
plugin you want to host. If the plugin is located in the current folder, specify it by its
name.

Tips

* The Audio Test Bench provides persistent input and output settings across sessions.

See Also

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics

“Audio Test Bench Walkthrough”

“What Are DAWSs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”

“Audio Plugin Example Gallery”

1-11

1 Apps in Audio Toolbox

Introduced in R2016a

1-12

Functions in Audio Toolbox

2 Functions in Audio Toolbox

2-2

melSpectrogram

Mel spectrogram

Syntax

S melSpectrogram(audioln, fs)

S melSpectrogram(audiolIn, fs,Name,Value)
[S,F,T] = melSpectrogram()
melSpectrogram()

Description

S = melSpectrogram(audiolIn, fs) returns the mel spectrogram of the audio input at
sample rate fs. The function treats columns of the input as individual channels.

S = melSpectrogram(audioIn, fs,Name,Value) specifies options using one or more
Name, Value pair arguments.

[S,F,T] = melSpectrogram() returns the center frequencies of the bands in Hz
and the location of each window of data in seconds. The location corresponds to the
center of each window. You can use this output syntax with any of the previous input
syntaxes.

melSpectrogram() plots the mel spectrogram on a surface in the current figure.

Examples

Calculate Mel Spectrogram

Use the default settings to calculate the mel spectrogram for an entire audio file. Print
the number of bandpass filters in the filter bank and the number of frames in the mel
spectrogram.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

melSpectrogram

Freguency (kHz)

S = melSpectrogram(audioIn,fs);

[numBands,numFrames] = size(S);

fprintf("Number of bandpass filters in filterbank: %d\n",numBands)
fprintf("Number of frames in spectrogram: %d\n",numFrames)

Number of bandpass filters in filterbank: 32
Number of frames in spectrogram: 1551

Plot the mel spectrogram.

melSpectrogram(audioIn, fs)

19.8

8.1
o
i)
3.09 ©
g
[al
0.928
0.0779

2 Functions in Audio Toolbox

2-4

Calculate Mel Spectrums of 2048-Point Windows

Calculate the mel spectrums of 2048-point windows with 1024-point overlap. Convert to
the frequency domain using a 4096-point FFT. Pass the frequency-domain representation
through 64 half-overlapped triangular bandpass filters that span the range 62.5 Hz to 8
kHz.

[audioIn, fs] = audioread('FunkyDrums-44pl-stereo-25secs.mp3');

S = melSpectrogram(audioln,fs,
'WindowlLength',2048, ...
'OverlaplLength', 1024,
'"FFTLength', 4096,
"NumBands', 64,
'FrequencyRange', [62.5,8e3]);

Call melSpectrogram again, this time with no output arguments so that you can
visualize the mel spectrogram. The input audio is a multichannel signal. If you call
melSpectrogram with a multichannel input and with no output arguments, only the first
channel is plotted.

melSpectrogram(audiolIn, fs,
'WindowLength',2048, ...
'OverlapLength', 1024,
'"FFTLength', 4096,
"NumBands', 64,
'FrequencyRange', [62.5,8e3])

melSpectrogram

Freguency (kHz)

7.68

1.83 ?
0.688 | 1 i l | I
l,\”u,s'n,li“,ln} 1 M b bk

Tlme {s}

Get Filter Bank Center Frequencies and Analysis Window Time Instants

melSpectrogram applies a frequency-domain filter bank to audio signals that are
windowed in time. You can get the center frequencies of the filters and the time instants
corresponding to the analysis windows as the second and third output arguments from
melSpectrogram.

Get the mel spectrogram, filter bank center frequencies, and analysis window time
instants of a multichannel audio signal. Use the center frequencies and time instants to
plot the mel spectrogram for each channel.

2-5

2 Functions in Audio Toolbox

2-6

[audioIn,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
[S,cF,t] = melSpectrogram(audioln,fs);
S = 10*loglO(S+eps); % Convert to dB for plotting

for i = 1:size(S,3)
figure(1i)
surf(t,cF,S(:,:,1i), 'EdgeColor', 'none');
xlabel('Time (s)"')
ylabel('Frequency (Hz)"')
view([0,90])
title(sprintf('Channel %d',1i))
axis([t(1l) t(end) cF(1l) cF(end)])
end

melSpectrogram

Frequency (Hz)

7000

=
2

=]
g

=]
]

1000

Channel 1

Time (s)

2-7

2 Functions in Audio Toolbox

Channel 2

7000

5 3
g 2

Frequency (Hz)
=]
]

1000

Time (s)

2-8

melSpectrogram

Frequency (Hz)

7000

=
2

=]
g

=]
]

1000

Channel 3

Time (s)

2-9

2 Functions in Audio Toolbox

Channel 4

7000

5 3
g 2

Frequency (Hz)
=]
]

1000

Time (s)

Input Arguments

audioIn — Audio input
column vector | matrix

Audio input, specified as a column vector or matrix. If specified as a matrix, the function
treats columns as independent audio channels.

Data Types: single | double

fs — Input sample rate (Hz)
positive scalar

2-10

melSpectrogram

Input sample rate in Hz, specified as a positive scalar.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'WindowLength',6 1024

WindowLength — Analysis window length (samples)
round(0.03*fs) (default) | integer in the range [2, size(audioIn,1)]

Analysis window length in samples, specified as the comma-separated pair consisting of
'WindowlLength' and an integer in the range [2, size(audioIn,l1)].

Data Types: single | double

OverlapLength — Analysis window overlap length (samples)
round(0.02*fs) (default) | integer in the range [0, (WindowLength - 1)]

Analysis window overlap length in samples, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, (WindowLength -

1)].
Data Types: single | double

FFTLength — Number of DFT points
WindowlLength (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair
consisting of 'FFTLength' and a positive integer greater than or equal to
WindowLength. If unspecified, FFTLength defaults to WindowLength.

Data Types: single | double

NumBands — Number of mel bandpass filters
32 (default) | positive integer

Number of mel bandpass filters, specified as the comma-separated pair consisting of
"NumBands' and a positive integer.

2-11

2 Functions in Audio Toolbox

2-12

Data Types: single | double

FrequencyRange — Frequency range over which to compute mel spectrogram
(Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to compute the mel spectrogram in Hz, specified as the
comma-separated pair consisting of ' FrequencyRange' and a two-element row vector of
monotonically increasing values in the range [0, fs/2].

Data Types: single | double

SpectrumType — Type of mel spectrogram
"power' (default) | 'magnitude’

Type of mel spectrogram, specified as the comma-separated pair consisting of
'SpectrumType' and 'power' or 'magnitude’.

Data Types: char | string

Output Arguments

S — Mel spectrogram
column vector | matrix | 3-D array

Mel spectrogram, returned as a column vector, matrix, or 3-D array. The dimensions of S
are L-by-M-by-N, where:

» L is the number of frequency bins in each mel spectrum. NumBands and fs determine
L.

* M is the number of frames the audio signal is partitioned into. size(audioIn, 1),
WindowlLength, and OverlapLength determine M.

e N is the number of channels such that N = size(audiolIn,?2).

Trailing singleton dimensions are removed from the output S.

Data Types: single | double

F — Center frequencies of mel bandpass filters (Hz)
row vector

melSpectrogram

Center frequencies of mel bandpass filters in Hz, returned as a row vector with length
size(S,1).

Data Types: single | double

T — Location of each window of audio (s)
row vector

Location of each analysis window of audio in seconds, returned as a row vector length
size(S,2). The location corresponds to the center of each window.

Data Types: single | double

Algorithms

The melSpectrogram function follows the general algorithm to compute a mel
spectrogram as described in [1].

Mel Filter Bank

—» »| sum [—
—» »| sum [
audioln ——»| Buffer |—»] Window |—»] [FFT| *]| —» Mel Spectrogram
- *
- *
- -
L sum |

In this algorithm, the audio input is first buffered into frames of WindowLength number
of samples. The frames are overlapped by OverlapLength number of samples. A
periodic hamming window is applied to each frame, and then the frame is converted to
frequency-domain representation with FFTLength number of points. The frequency-
domain representation can be either magnitude or power, specified by SpectrumType.

2-13

2 Functions in Audio Toolbox

Each frame of the frequency-domain representation passes through a mel filter bank. The
spectral values output from the mel filter bank are summed, and then the channels are
concatenated so that each frame is transformed to a NumBands-element column vector.

Filter Bank Design

The mel filter bank is designed as half-overlapped triangular filters equally spaced on the
mel scale. NumBands controls the number of mel bandpass filters. FrequencyRange
controls the band edges of the first and last filters in the mel filter bank. The filters are

normalized by their bandwidths, so that if white noise is input to the system, each filter
outputs an equal amount of energy.

-
Filter 1
v
umBands =
4 NumBands =N
{
|
f|' |
‘ !||| [
ff
‘ || ||III| I
| ||| LN
| 1 \
(f , IR . Filter N
| I| | I(:I .. 'I I| ."n" ‘ I
‘||||I|".-'It- WA N \
[l | || I| |I .' II III III ! , '\\\ \\\ N
1l ‘ |J 1 II |lI I' \ / %, //&\ \\ >
| FrequencyRange |

References

[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital
Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

2-14

melSpectrogram

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

gtcc |mdct | mfcc | spectrogram

Topics
“Speech Command Recognition Using Deep Learning’

]

Introduced in R2019a

2-15

2 Functions in Audio Toolbox

kbdwin

Kaiser-Bessel-derived window

Syntax
wdw = kbdwin(N)
wdw = kbdwin(N,Beta)

Description

wdw kbdwin (N) returns an N-point Kaiser-Bessel-derived (KBD) window.

wdw = kbdwin(N,Beta) specifies the tuning parameter, Beta.

Examples

Create Kaiser-Bessel-Derived Window

Create a 1024-point Kaiser-Bessel-derived (KBD) window. Visualize the KBD window in
the time and frequency domains using wvtool.

wdw = kbdwin(1024);
wvtool (wdw)

2-16

kbdwin

4 Figure 1: Window Visualization Taal o || B ER
File Edit Wiew Inset Tools Window Help L]
G|k OT7TXNNNH| @ & E W
Windosw: Yisser
Time domain T Frequency damain
1 —
/ \ 50
08 \
\'u, _
4 \ T 0
206 \ [<]
2 \ 3
g \ &
=50
04 3
I"-,'|
0.2 \ | =10
0 - - : - \ =150 . - . .
200 400 600 800 1000 0 02 04 0.6 08
Samples MNomnalized Frequency (== radisample)
Leakage Factor: 1.39 % Relative sidelobe attenuation: -18.7 dB Mainlobe width [-3dB): 000265855

Effect of Tuning Parameter Beta

Create three 512-point KBD windows, with Beta set to 1, 10, and 100. Display the
windows for comparison using wvtool.

N = 512;

betal = kbdwin(N,1);
betal® = kbdwin(N,10);
betal®® = kbdwin(N,100);

wvtool(betal,betall,betal00)

2-17

2 Functions in Audio Toolbox

[Figure 1: Window Visualization Tool

File Edit View Inset Tools

Window Wieswer
Time domain

Window Help

SR K OTNNNH | & e &0 EE| W

Amplitude

100 200 300
Samples
Leakage Factor: 6.4 %

Magnitude (dB)

g g

J
[

Frequency damain

1':}0[

=

&

g

=
=

0

Relstive sidelobe attenuation: -13.7 dB

02 04 0.6 08
MNomnalized Frequency (== radisample)
Mazinlobe width (-3dB): 0.0083477

d

1

Input Arguments

N — Number of points in KBD window
even positive integer scalar

Number of points in the KBD window, specified as an even positive integer scalar.

Data Types: single | double

Beta — Tuning parameter
5 (default) | nonnegative real scalar

Tuning parameter, specified as a nonnegative real scalar. If unspecified, Beta defaults to

5.

2-18

kbdwin

Data Types: single | double

Output Arguments

wdw — Kaiser-Bessel-derived window
N-point column vector

Kaiser-Bessel-derived window, returned as an N-point column vector.

Algorithms

The coefficients of a Kaiser-Bessel-derived window are computed using the equation:

wdw[n] =

where w is a Kaiser window designed using the kaiser function:

w = kaiser(N/2+1,Beta*pi)

where N is the number of points in the KBD window and Beta is the tuning parameter.

References

[1] Bosi, Marina, and Richard E. Goldberg. Introduction to Digital Audio Coding and
Standards. Dordrecht: Kluwer, 2003.

2-19

2 Functions in Audio Toolbox

2-20

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

kaiser | mdct | window

Introduced in R2019a

mdct

madct

Modified discrete cosine transform

Syntax

mdct(X,win)
mdct (X,win,Name, Value)
Y,S,Z] = mdct()

Y
Y
[

Description

Y = mdct(X,win) returns the modified discrete cosine transform (MDCT) of X. Before
the MDCT is calculated, X is buffered into 50% overlapping frames that are each
multiplied by the time window win. The function treats each column of X as an
independent channel.

Y = mdct(X,win,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

[Y,S,Z] = mdct() returns the modified discrete sine transform (MDST), S, and
the odd discrete Fourier transform (ODFT), Z.

Examples

Calculate MDCT

Read in an audio file and then calculate the MDCT using a 1024-point Kaiser-Bessel-
derived window.

audioIn = audioread('Counting-16-44pl-mono-15secs.wav');
coef = mdct(audioln, kbdwin(1024));

Plot the power of the MDCT coefficients over time.

2-21

2 Functions in Audio Toolbox

Frequency

2-22

surf(20*logl0(coef.”2), 'EdgeColor', 'none');
view([0 90])

xlabel('Frame')

ylabel('Frequency")

axis([0 size(coef,2) 0 size(coef,1)])
colorbar

] 200 400 600 800 1000 1200
Frame

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the
audio input signal. The signal returned from imdct removes the zero padding added for

perfect reconstruction.

mdct

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the
audio signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44pl-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1l:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time
domain. Plot the original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);
figure(1)

t = (0:size(xClipped,1)-1)'/fs;

plot(t,xClipped, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y)."2))))
xlabel('Time (s)"')

ylabel('Amplitude")

2-23

2 Functions in Audio Toolbox

Reconstruction Error = 1.6204e-31

O Original Signal
Reconstructed Signal | 4

®
0.4
_

Amplitude

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time (s)

You can perform the MDCT and IMDCT without input padding using the PadInput name-
value pair. However, there will be a reconstruction error in the first half-frame and last

half-frame of the signal.

C = mdct(xClipped,win, 'PadInput’', false);
y = imdct(C,win, 'PadInput', false);
figure(2)

t = (0:size(xClipped,1)-1)"'/fs;

plot(t,xClipped, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')

title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-
xLlabel('Time (s)')

ylabel('Amplitude")

2-24

mdct

Amplitude

Reconstruction Error (Without Input Padding) = 0.0014139
D. 5 T T T T T T

@ O Original Signal

0.4 r & * Reconstructed Signal | -

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time (s)

If you specify an input signal to the mdct that is not a multiple of the window length,

the input signal is padded with zeros. Pass the original unclipped signal through the
transform pair and compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);
figure(3)

subplot(2,1,1)

plot(x)

title('Original Signal')
ylabel('Amplitude")
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

then

2-25

2 Functions in Audio Toolbox

subplot(2,1,2)

plot(y)

title('Reconstructed Signal')

xLlabel('Time (s)"')

ylabel('Amplitude")
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

Original Signal

05 T T T T T T
k)
=
=
2 0 1
=
<,
05 i i i i i i i i
1] 1000 2000 3000 4000 5000 6000 Fooo 8000
05 Reconstructed Signal
d
=
=
= 0
E
<,
05 i i i i i i i i
1] 1000 2000 3000 4000 5000 G000 Fooo 8000

Time (s)

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding
from the reconstructed signal, plot the original and reconstructed signal, and then display

the reconstruction error.

figure(4)
y = y(lisize(x,1));

2-26

mdct

Amplitude

t = (0:size(x,1)-1)"'/fs;

plot(t,x, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y)."2))))
xlabel('Time (s)')

ylabel('Amplitude")

Reconstruction Error = 1.2447e-31

0.5 T T

¢
041
8

© Original Signal
Reconstructed Signal | -

0 002 004 006 008 01 012 014 016 018 02
Time (s)

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a
dsp.AsyncBuffer to buffer the input stream.

2-27

2 Functions in Audio Toolbox

2-28

fileReader = dsp.AudioFileReader('FunkyDrums-44pl-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

’

N = 512
= kbdwin(N);

win
In an audio stream loop:
1 Read a frame of data from the file.

Write the frame of data to the async buffer.

If half a frame of data is present, read from the buffer and then perform the
transform pair. Overlap-add the current output from imdct with the previous output,
and log the results. Update the memory.

mem = zeros(N/2,2); % initialize an empty memory
while ~isDone(fileReader)
audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= N/2

x = read(buff,N,N/2);
C = mdct(x,win, 'PadInput', false);
y = imdct(C,win, 'PadInput', false);

logger(y(1:N/2,:)+mem)
mem = y(N/2+1:end, :);
end

end

o°

Perform the transform pair one last time with a zero-padded final signal.
read(buff,N,N/2);

mdct(x,win, 'PadInput', false);

imdct(C,win, 'PadInput', false);

ogger(y(1:N/2, :)+mem)

X
C
y
1

reconstructedSignal = logger.Buffer;

mdct

Read in the entire original audio signal. Trim the front and back zero padding from the
reconstructed signal for comparison. Plot one channel of the original and reconstructed
signals and display the reconstruction error.

[originalSignal, fs] = audioread(fileReader.Filename);
signallLength = size(originalSignal,l);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signallLength-1,:);

t = (0:size(originalSignal,1l)-1)'/fs;

plot(t,originalSignal(:,1), 'bo',t,reconstructedSignal(:,1),'r.")

legend('Original Signal', 'Reconstructed Signal')

title(strcat("Reconstruction Error = ", ...
num2str(mean((originalSignal-reconstructedSignal).”2,'all'))))

xlabel('Time (s)')

ylabel('Amplitude")

2-29

2 Functions in Audio Toolbox

Reconstruction Error = 2.1737e-32
1 T T T T T
& O Original Signal
0.8 : _ * Reconstructed Signal | -

L]

o6 8 H &2 1K { Bl 1

Amplitude

0 & 10 15 20 25 30

Input Arguments

X — Input array
column vector | matrix

Input array, specified as a column vector or matrix. If specified as a matrix, the columns
are treated as independent audio channels.

Data Types: single | double

win — Window applied in time domain
even-length vector

2-30

mdct

Window applied in the time domain, specified as an even-length vector. The transform
performed by mdct has the same number of points as win. To enable perfect
reconstruction, use a window that satisfies the Princen-Bradley condition

(w2 + W,ZI +N = 1), such as a sine window or kbdwin.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'PadInput', false

PadInput — Flag to pad input array
true (default) | false

Flag to pad input array, specified as the comma-separated pair consisting of 'PadInput’
and true or false. If set to true, zero-padding is added to the input X at both ends to
enable perfect reconstruction. The number of zeros at each end is numel (win) /2.

Data Types: logical

Output Arguments

Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), returned as a vector, matrix, or 3-D array.
The dimensions of Y are L-by-M-by-N, where:

* L -- Number of points in the frequency-domain representation of each frame, equal to
numel(win)/2.

* M —- Number of frames the input array is partitioned into.

o IfPadInputissettotrue,M = ceil(2*size(X,1)/numel(win))+1.
+ IfPadInput issetto false,M = ceil(2*size(X,1)/numel(win))-1.

2-31

2 Functions in Audio Toolbox

2-32

* N -- Number of channels, equal to size(X,2).

Trailing singleton dimensions are removed from the output Y.
Data Types: single | double

S — Modified discrete sine transform
vector | matrix | 3-D array

Modified discrete sine transform (MDST), returned as a vector, matrix, or 3-D array. The
dimensions of S are the same as the MDCT output, Y.

Data Types: single | double

Z — Half-sided odd discrete Fourier transform
vector | matrix | 3-D array

Half-sided odd discrete Fourier transform (ODFT), returned as a vector, matrix, or 3-D
array of complex numbers. The dimensions of Z are the same as the MDCT output, Y.

To construct the complete (two-sided) ODFT, mirror the half-sided ODFT:
cat(l,Z,conj(flip(Z,1))).

Data Types: single | double
Complex Number Support: Yes

Algorithms

The modified discrete cosine transform is a time-frequency transform. Given an input
signal X and window win, the mdct function performs the following steps for each
independent channel:

1 The frame size is the number of elements in the specified window, N = numel (win).
By default, PadInput is set to true, so the input signal X is padded with N/2 zeros
on the front and back. If the input signal is not divisible by N, additional padding is
added on the back. After padding, the input signal is buffered into 50% overlapped
frames.

Each frame of the buffered and padded input signal is multiplied by the window, win.

3 The input is converted into a frequency representation using the modified discrete
cosine transform:

mdct

N-1
Y(k) = > X(n)cos
n=0

2 2

(1\;2) Ly R+ 1](k + l)} k=0,1,..,(Nhp) -1

To take advantage of the FFT algorithm, the MDCT is calculated by first calculating the
odd DFT:

N-1 1IN
Yotk) = > X(n)e /N@+D k=0,1,.,N-1
and then calculating the MDCT:

Yk = e{¥ollooos(lk + 31 + 5). k=01, (Np)-1

If a second argument is requested from the mdct function, the modified discrete sine
transform (MDST) is also computed and returned:

X0 = sm{X,(0 fsin{o{k + 3)[1+ 5], k=01, (Np) -1

References

[1] Princen,]., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank
Designs Based on Time Domain Aliasing Cancellation." IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1987, pp.
2161-2164.

[2] Princen,]., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time
Domain Aliasing Cancellation." IEEE Transactions on Acoustics, Speech, and
Signal Processing. Vol. 34, Issue 5, 1986, pp. 1153-1161.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-33

2 Functions in Audio Toolbox

See Also

imdct | kbdwin | spectrogram

Introduced in R2019a

2-34

imdct

imdct

Inverse modified discrete cosine transform

Syntax

X
X

imdct(Y,win)
imdct(Y,win,Name,Value)

Description

X = imdct(Y,win) returns the inverse modified discrete cosine transform (IMDCT) of
Y, followed by multiplication with time window win and overlap-addition of the frames
with 50% overlap.

X = imdct(Y,win,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Examples

Calculate IMDCT

Read in an audio file, convert it to mono, and then plot it.

audioIn = audioread('FunkyDrums-44pl-stereo-25secs.mp3');
audioIn = mean(audioln,?2);
figure(1l)

plot(audioln, 'bo")
ylabel('Amplitude")
xlabel('Sample Number')

2-35

2 Functions in Audio Toolbox

1 T T T T T D
o} - 0. O
0.8 - ~ a 1
@ o g E : Q = @ DD
= = o £ == =]
0.6 5 B = 1- I
0.4 b . = - 1

Amplitude

-D4 i - é. = E, = T

: = = :
s O £ i

0.6 ; o :

1 1 g 1 1 1
0.8
0 2 4 G a8 10 12

Sample Number w107

Calculate the MDCT using a 4096-point sine window. Plot the power of the MDCT
coefficients over time.

N = 4096;
wdw = sin(pi*((1:N)-0.5)/N);

C = mdct(audioIn,wdw);

figure(2)
surf(20*1ogl0(C.*conj(C)), 'EdgeColor', 'none');
view ([0 901)

xlabel('Frame')

ylabel('Frequency"')

2-36

imdct

Frequency

axis([0 size(C,2) 0 size(C,1)1)
colorbar

2000 [
1800 |

1600 |

600 [
ey

200 £

] 100 200 300 400 500
Frame

Transform the representation back to the time domain. Verify the perfect reconstruction
property by computing the mean squared error. Plot the reconstructed signal over the
original signal.

audioReconstructed = imdct(C,wdw);
err = mean((audioIn-audioReconstructed(1l:size(audioIn,1),:))."2)

figure(1)

hold on
plot(audioReconstructed, 'r.")

2-37

2 Functions in Audio Toolbox

ylabel('Amplitude")
xLlabel('Sample Number')

err =

9.5889%e-31

Amplitude

2-38

Sample Number

12
% 10°

imdct

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the
audio input signal. The signal returned from imdct removes the zero padding added for
perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the
audio signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44pl-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1l:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time
domain. Plot the original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);
figure(1)

t = (0:size(xClipped,1)-1)"'/fs;

plot(t,xClipped, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y)."2))))
xlabel('Time (s)"')

ylabel('Amplitude")

2-39

2 Functions in Audio Toolbox

Reconstruction Error = 1.6204e-31

O Original Signal
Reconstructed Signal | 4

®
0.4
_

Amplitude

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time (s)

You can perform the MDCT and IMDCT without input padding using the PadInput name-
value pair. However, there will be a reconstruction error in the first half-frame and last

half-frame of the signal.

C = mdct(xClipped,win, 'PadInput’', false);
y = imdct(C,win, 'PadInput', false);
figure(2)

t = (0:size(xClipped,1)-1)"'/fs;

plot(t,xClipped, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')

title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-
xLlabel('Time (s)')

ylabel('Amplitude")

2-40

imdct

Amplitude

Reconstruction Error (Without Input Padding) = 0.0014139
D. 5 T T T T T T

@ O Original Signal

0.4 r & * Reconstructed Signal | -

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Time (s)

If you specify an input signal to the mdct that is not a multiple of the window length
the input signal is padded with zeros. Pass the original unclipped signal through the
transform pair and compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);
figure(3)

subplot(2,1,1)

plot(x)

title('Original Signal')
ylabel('Amplitude")
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

, then

2-41

2 Functions in Audio Toolbox

subplot(2,1,2)

plot(y)

title('Reconstructed Signal')

xLlabel('Time (s)"')

ylabel('Amplitude")
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

Original Signal

05 T T T T T T
k)
=
=
2 0 1
=
<,
05 i i i i i i i i
1] 1000 2000 3000 4000 5000 6000 Fooo 8000
05 Reconstructed Signal
d
=
=
= 0
E
<,
05 i i i i i i i i
1] 1000 2000 3000 4000 5000 G000 Fooo 8000

Time (s)

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding
from the reconstructed signal, plot the original and reconstructed signal, and then display

the reconstruction error.

figure(4)
y = y(lisize(x,1));

2-42

imdct

Amplitude

t = (0:size(x,1)-1)"'/fs;

plot(t,x, 'bo',t,y,'r.")

legend('Original Signal', 'Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y)."2))))
xlabel('Time (s)')

ylabel('Amplitude")

Reconstruction Error = 1.2447e-31

0.5 T T

¢
041
8

© Original Signal
Reconstructed Signal | -

0 002 004 006 008 01 012 014 016 018 02
Time (s)

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a
dsp.AsyncBuffer to buffer the input stream.

2-43

2 Functions in Audio Toolbox

2-44

fileReader = dsp.AudioFileReader('FunkyDrums-44pl-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

’

N = 512
= kbdwin(N);

win
In an audio stream loop:
1 Read a frame of data from the file.

Write the frame of data to the async buffer.

If half a frame of data is present, read from the buffer and then perform the
transform pair. Overlap-add the current output from imdct with the previous output,
and log the results. Update the memory.

mem = zeros(N/2,2); % initialize an empty memory
while ~isDone(fileReader)
audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= N/2

x = read(buff,N,N/2);
C = mdct(x,win, 'PadInput', false);
y = imdct(C,win, 'PadInput', false);

logger(y(1:N/2,:)+mem)
mem = y(N/2+1:end, :);
end

end

o°

Perform the transform pair one last time with a zero-padded final signal.
read(buff,N,N/2);

mdct(x,win, 'PadInput', false);

imdct(C,win, 'PadInput', false);

ogger(y(1:N/2, :)+mem)

X
C
y
1

reconstructedSignal = logger.Buffer;

imdct

Read in the entire original audio signal. Trim the front and back zero padding from the
reconstructed signal for comparison. Plot one channel of the original and reconstructed
signals and display the reconstruction error.

[originalSignal, fs] = audioread(fileReader.Filename);
signallLength = size(originalSignal,l);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signallLength-1,:);

t = (0:size(originalSignal,1l)-1)'/fs;

plot(t,originalSignal(:,1), 'bo',t,reconstructedSignal(:,1),'r.")

legend('Original Signal', 'Reconstructed Signal')

title(strcat("Reconstruction Error = ", ...
num2str(mean((originalSignal-reconstructedSignal).”2,'all'))))

xlabel('Time (s)')

ylabel('Amplitude")

2-45

2 Functions in Audio Toolbox

Reconstruction Error = 2.1737e-32
1 T T T T T
& O Original Signal
0.8 : _ * Reconstructed Signal | -

L]

o6 8 H &2 1K { Bl 1

Amplitude

0 & 10 15 20 25 30

Input Arguments

Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), specified as a vector, matrix, or 3-D array.
The dimensions of Y are interpreted as output from the mdct function. If Y is an L-by-M-
by-N array, the dimensions are interpreted as:

* L -- Number of points in the frequency-domain representation of each frame. L must
be half the number of points in the window, win.

2-46

imdct

¢ M —- Number of frames.
e N -- Number of channels.

Data Types: single | double

win — Window applied in time domain
vector

Window applied in the time domain, specified as vector. The length of win must be twice
the number of rows of Y: numel (win)==2*size(Y,1). To enable perfect reconstruction,
use the same window used in the forward transformation mdct.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'PadInput', false

PadInput — Flag if input was padded
true (default) | false

Flag if input to the forward mdct was padded. If set to true, the output is truncated at
both ends to remove the zero-padding that the forward mdct added.

Data Types: logical

Output Arguments

X — Inverse modified discrete cosine transform
column vector | matrix

Inverse modified discrete cosine transform (IMDCT) of input array Y, returned as a
column vector or matrix of independent channels.

Data Types: single | double

2-47

2 Functions in Audio Toolbox

2-48

Algorithms

The inverse modified discrete cosine transform is a time-frequency transform. Given a
frequency domain input signal Y and window win, the imdct function performs the
follows steps for each independent channel:

1 Each frame of the input is converted into a time-domain representation:

N_
2

X(n)= > Y(k)cos
k=0

LR+l

2 , n=01,.,N-1

2

o}

o
(N2)
where N is the number of elements in win.

2 Each frame of the time-domain signal is multiplied by the window, win.

3 The frames are overlap-added with 50% overlap to construct a contiguous time-
domain signal. If PadInput is set to true, the imdct function assumes the original
input signal in the forward transform (mdct) was padded with N/2 zeros on the front
and back and removes the padding. By default, PadInput is set to true.

References

[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank
Designs Based on Time Domain Aliasing Cancellation." IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1987, pp.
2161-2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time

Domain Aliasing Cancellation." IEEE Transactions on Acoustics, Speech, and
Signal Processing. Vol. 34, Issue 5, 1986, pp. 1153-1161.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

imdct

See Also

kbdwin | mdct | spectrogram

Introduced in R2019a

2-49

2 Functions in Audio Toolbox

2-50

harmonicRatio

Harmonic ratio

Syntax

hr = harmonicRatio(audioIn, fs)
hr harmonicRatio(audioIn, fs,Name,Value)

Description

hr = harmonicRatio(audioIn, fs) returns the harmonic ratio of the signal,
audioIn, over time. Columns of the input are treated as individual channels.

hr = harmonicRatio(audiolIn, fs,Name,Value) specifies options using one or more
Name, Value pair arguments.

Example: hr =
harmonicRatio(audioIn, fs, 'Window', rectwin(round(fs*0.1)), 'OverlapLen
gth',round(fs*0.05)) returns the harmonic ratio for the audio input signal sampled
at fs Hz. The harmonic ratio is calculated for 100 ms rectangular windows with 50 ms
overlap.

Examples

Calculate Harmonic Ratio

Read in an audio file, calculate the harmonic ratio using default parameters, and then plot
the results.

[audioIn, fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
audioInMono = mean(audioln,2);

hr = harmonicRatio(audioInMono, fs);

harmonicRatio

t = (0:length(audioInMono)-1)/fs;
subplot(2,1,1)
plot(t,audioInMono)
ylabel('Amplitude")

t = linspace(0,size(audioInMono,l)/fs,size(hr,1));
subplot(2,1,2)

plot(t,hr)

xLlabel('Time (s)')

ylabel('Harmonic Ratio')

{]4 T T T T T T

Amplitude

o
=2
i

Harmonic Ratio
=
[=2]
T
i

=
.
T
1

o
(&

10 12 14

=
3%
.
(=2}
o

Time (s)

2-51

2 Functions in Audio Toolbox

2-52

Specify Nondefault Parameters

Read in an audio file.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the harmonic ratio of the audio file using 50 ms Hann windows with 25 ms
overlap. Plot the results.

hr = harmonicRatio(audioln, fs,
'Window',hann(round(fs.*0.05), 'periodic'),
'"OverlapLength', round(fs.*0.025));

t = linspace(0,size(audioIn,1l)/fs,size(hr,1));
plot(t,hr)

xlabel('Time (s)')

ylabel('Harmonic Ratio')

harmonicRatio

Harmonic Ratio

D.g T T T T T T T

0.7

0.4 [7

01r 7

'D i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

The harmonic ratio indicates the ratio of energy in the harmonic portion of audio to the
total energy of the audio. Because the audio signal in this example has regions of near
silence, where the total energy is very low, the harmonic ratio does a poor job
discriminating between regions of speech and regions of silence. Add white noise to the
audio signal and then calculate and plot the harmonic ratio.

audioIn = audioIn + 0.1*randn(size(audioIn));

hr = harmonicRatio(audioln, fs, .
‘"Window',hann(round(fs.*0.05), 'periodic'),
'OverlapLength', round(fs.*0.025));

t = linspace(0,size(audioIn,l)/fs,size(hr,1));
plot(t,hr)

2-53

2 Functions in Audio Toolbox

xLlabel('Time (s)')
ylabel('Harmonic Ratio')

0.9 T T T T T T T
0.8r b
0.7 7

0.6 ‘ 7

Harmonic Ratio

0.3r ‘ 7

]
0.1 h’% ":ua'i‘q UH'J" |4.r.,llp|| I'

D i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

L
£
£
=

Calculate Harmonic Ratio of Streaming Audio

Create a dsp.AudioFileReader object to read in stereo audio data frame-by-frame.
Create a dsp.SignalSink object to log the harmonic ratio calculation.

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
logger = dsp.SignalSink;

In an audio stream loop:

2-54

harmonicRatio

1 Read in a frame of audio data.
2 Calculate the harmonic ratio for each channel of the frame of audio.
3 Log the harmonic ratio for later plotting.

To calculate the harmonic ratio for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame, 'periodic');
while ~isDone(fileReader)
audioIn = fileReader();

hr = harmonicRatio(audioIn, fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(hr)
end

plot(logger.Buffer)

ylabel('Harmonic Ratio')
legend('Left Channel', 'Right Channel')

2-55

2 Functions in Audio Toolbox

1 T T T T T T

=
o

Left Channel
0.9 g Right Channel |]
LI '
0.7 ‘ | 1

Harmonic Ratio
oo
= o
T T

=
Lad
T

o
3
T

o1r

0 200 400 600 800 1000 1200 1400

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent
samples-per-frame with the analysis window size of harmonicRatio, or if you want to
calculate the harmonic ratio of overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.
buff = dsp.AsyncBuffer;

reset(logger)
release(fileReader)

Calculate the harmonic ratio using 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

2-56

harmonicRatio

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);

while ~isDone(fileReader)
audioIn = fileReader();
write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

hr = harmonicRatio(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(hr)
end

end
release(fileReader)

Plot the logged data.
plot(logger.Buffer)

ylabel('Harmonic Ratio')
legend('Left Channel', 'Right Channel')

2-57

2 Functions in Audio Toolbox

2-58

1 T T T T T
i f l ’)
1 J i Left Channel
[

Right Channel

03 J | | ;'

Harmonic Ratio
o
o
T
e
1

D_z i i i i i

Harmonic Ratio of Tones and White Noise

The harmonic ratio measures the amount of energy in the tonal part of the signal
compared to the amount of energy in the total signal.

Harmonic Ratio of Pure Tone

Create a pure tone and then calculate the harmonic ratio using default parameters. By
default, the harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops.
Plot the results. The harmonic ratio is near 1, which is the theoretical maximum.

harmonicRatio

Harmonic Ratio

fs = 48e3;

osc = audioOscillator('Frequency',500, ...
'SamplesPerFrame',192e3, 'SampleRate', fs);

sinewave = osc();

hr = harmonicRatio(sinewave, fs);

t = linspace(0,size(sinewave,l)/fs,size(hr,1));
plot(t,hr)

xLlabel('Time (s)')

ylabel('Harmonic Ratio')

title('Sinusoid - Default Parameters')

Sinusoid - Default Parameters

0.9762984794275

0.97629847942748

0.97629847942746

0.97629847942744

0.97629847942742

0.9762984794274 |

0.97629847942738

0.97629847942736

0.97629847942734

0.97629847942732

0.9762984794273

2-59

2 Functions in Audio Toolbox

2-60

The short-time analysis required for windowing lowers the harmonic ratio from the
theoretical value of 1. To diminish the effect of windowing, you can increase the window
size. Use a 100 ms Hamming window and a 10 ms hop, and observe that the harmonic
ratio is closer to one than when using the default window length.

win = hamming(round(fs*0.1), 'periodic');
overlap = round(fs*0.099);

hr = harmonicRatio(sinewave, fs, 'Window',win, 'OverlapLength',overlap);

t = linspace(0,size(sinewave,l)/fs,size(hr,1));
plot(t,hr)

xlabel('Time (s)')

ylabel('Harmonic Ratio')

title('Sinusoid - 100 ms Window')

harmonicRatio

Harmonic Ratio

Sinusoid - 100 ms Window

0.99773485783144

0.99773485783142

0.9977348578314

0.99773485783138

0.9977 3485783136

0.9977 3485783134

l

0.99773485783132

0.9977348578313

0.99773485783128

0.99773485783126]

0.99773485783124

Harmonic Ratio of White Noise

Create 5 seconds of white noise and then calculate the harmonic ratio using default
parameters. By default, the harmonic ratio is calculated for 30 ms Hamming windows
with 10 ms hops. Plot the results. The harmonic ratio is 0.

fs = 48e3;
noise = rand(fs*5,1);

hr = harmonicRatio(noise, fs);
t = linspace(0,size(noise,l)/fs,size(hr,1));

plot(t,hr)
xlabel('Time (s)')

2-61

2 Functions in Audio Toolbox

ylabel('Harmonic Ratio')
title('Noise - Default Parameters')

Moise - Default Parameters

1 T T T T T T T T T

0.8 7

061 7

041 7

0.2 7

Harmonic Ratio
[

Time (s)

Input Arguments

audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If specified as a matrix,
harmonicRatio treats the columns of the matrix as individual audio channels.

Data Types: single | double

2-62

harmonicRatio

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
hamming(round(fs*0.03), 'periodic"') (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range [1,
size(audiolIn, 1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(fs*0.02) (default) | nonnegative integer scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

Output Arguments

hr — Harmonic ratio
scalar | vector | matrix

Harmonic ratio, returned as a scalar, vector, or matrix. Each row of hr corresponds to the
harmonic ratio of a window of audioIn. The harmonic ratio is returned with values in the

2-63

2 Functions in Audio Toolbox

2-64

range [0,1]. A value of 0 represents low harmonicity, and a value of 1 represents high
harmonicity.

Data Types: single | double

Algorithms

The harmonic ratio is calculated as described in [1]. The following algorithm is applied
independently to each window of audio data. The normalized autocorrelation of the signal
is determined as:

s(n)s(n — m)

1] Vg P

for(1=m=<M)

[N N
\/ > s(n)? > s(n — m)?
n n=0
where

* sis a single frame of audio data with N elements.

* M is the maximum lag in the calculation. The maximum lag is 40 ms, which
corresponds to a minimum fundamental frequency of 25 Hz.

A first estimate of the harmonic ratio is determined as the maximum of the normalized
autocorrelation, within a given range:

max

BHR = \f <m=M

{Ir'(m)}

where M, is the lower edge of the search range, determined as the first zero crossing of
the normalized autocorrelation.

Finally, the harmonic ratio estimate is improved using parabolic interpolation, as
described in [2].

References

[1] Kim, Hyoung-Gook, Nicholas Moreau, and Thomas Sikora. MPEG-7 Audio and Beyond:
Audio Content Indexing and Retrieval. John Wiley & Sons, 2005.

harmonicRatio

[2] Quadratic Interpolation of Spectral Peaks. Accessed October 11, 2018. https://
ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation Spectral Peaks.html

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

pitch | spectralCentroid | voiceActivityDetector

Introduced in R2019a

2-65

2 Functions in Audio Toolbox

2-66

gtcc

Extract gammatone cepstral coefficients, log-energy, delta, and delta-delta

Syntax

coeffs = gtcc(audioln,fs)
coeffs = gtcc(__ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = gtcc(_)

Description

coeffs = gtcc(audioln, fs) returns the gammatone cepstral coefficients (GTCCs) for
the audio input, sampled at a frequency of fs Hz.

coeffs = gtcc(,Name, Value) specifies options using one or more Name, Value
pair arguments.

[coeffs,delta,deltaDelta,loc] = gtcc() returns the delta, delta-delta, and
location in samples corresponding to each window of data. This output syntax can be used
with any of the previous input syntaxes.

Examples

Extract GTCC from Audio Signal

Get the gammatone cepstral coefficients for an audio file using default settings. Plot the
results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[coeffs,~,~,loc] = gtcc(audioln,fs);
t = loc./fs;

gtcc

plot(t,coeffs)

xLlabel('Time (s)"')

title('Gammatone Cepstral Coefficients')

legend('logE','0","'1",'2",'3",'4",'5",'¢6¢','7",'8",'9",'10"','11",'12",
'Location', 'northeastoutside')

Gammatone Cepstral Coefficients

10 T

i
—
—r

Time (s)

Specify Nondefault Parameters

Read in an audio file.

[audioIn, fs] = audioread('Turbine-16-44pl-mono-22secs.wav');

2-67

2 Functions in Audio Toolbox

Calculate 20 GTCC using filters equally spaced on the ERB scale between hz2erb(62.5)
and hz2erb(12000). Calculate the coefficients using 50 ms windows with 25 ms overlap.
Replace the 0th coefficient with the log-energy. Use time-domain filtering.

[coeffs,~,~,loc] = gtcc(audioln,fs,
"NumCoeffs', 20,
'FrequencyRange', [62.5,12000],
'WindowLength', round(0.05*fs),
'OverlapLength', round(0.025*fs),
'LogEnergy', 'Replace’,
'FilterDomain', 'Time');

Plot the results.

t = loc./fs;

plot(t,coeffs)

xlabel('Time (s)"')

title('Gammatone Cepstral Coefficients')

'Legend(l'l-ogEl’I1I’I2I’I3I’I4I,I5I’I6I’I7I,I8I’I9I’I10I’I11I’I12I’I13I’
'14','15','16','17"','18"','19"', 'Location', 'northeastoutside');

2-68

gtcc

Gammatone Cepstral Coefficients

h Costicins

—logE
1
2

4

&

8

10
11
12
13

| ||.|l L k Lalls'y o L '
A s P I O g AL

A | AT
il el el

ALt b Ly
)

Il ',I'fl_ AL ud. A s
1 Lkl

15
16
17
18
19

DA o A

—ﬁ i i i i
0 5 10 15 20 25

Time (s)

Input Arguments

audioIn — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If specified as a matrix, gtcc treats the
columns of the matrix as individual audio channels.

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

2-69

2 Functions in Audio Toolbox

2-70

Sample rate of the input signal in Hz, specified as a positive scalar.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: coeffs = gtcc(audioln,fs, 'LogEnergy', 'Replace') returns
gammatone cepstral coefficients for the audio input signal sampled at fs Hz. For each
analysis window, the first coefficient in the coeffs vector is replaced with the log energy
of the input signal.

WindowLength — Number of samples in analysis window
round(0.03*fs) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as the
comma-separated pair consisting of 'WindowLength' and an integer in the range [2,
size(audioln, 1)]. If unspecified, WindowLength defaults to round(0.03*fs).

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.02*fs) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
WindowLength). If unspecified, OverlapLength defaults to round(0.02*fs).

Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as the comma-
separated pair consisting of 'NumCoeffs' and an integer in the range [2, v]. v is the
number of valid passbands. If unspecified, NumCoeffs defaults to 13.

gtcc

The number of valid passbands is defined as the number of ERB steps (ERBy) in the
frequency range of the filter bank. The frequency range of the filter bank is specified by
FrequencyRange.

Data Types: single | double

FilterDomain — Domain in which to apply filtering
'"Frequency’' (default) | ' Time'

Domain in which to apply filtering, specified as the comma-separated pair consisting of
'"FilterDomain' and 'Frequency' or 'Time'. If unspecified, FilterDomain defaults
to Frequency.

Data Types: string | char

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 fs/2] (default) | two-element row vector

Frequency range of gammatone filter bank in Hz, specified as the comma-separated pair
consisting of ' FrequencyRange' and a two-element row vector of increasing values in
the range [0, fs/2]. If unspecified, FrequencyRange defaults to [50, fs/2]

Data Types: single | double

FFTLength — Number of bins in DFT
WindowlLength (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to WindowLength.

Data Types: single | double

DeltaWindowLength — Number of coefficients used to calculate delta and delta-
delta

2 (default) | odd integer greater than two

Number of coefficients used to calculate the delta and the delta-delta values, specified as
the comma-separated pair consisting of 'DeltaWindowLength' and two or an odd
integer greater than two. If unspecified, DeltaWindowlLength defaults to 2.

If DeltaWindowLength is set to 2, the delta is given by the difference between the
current coefficients and the previous coefficients.

2-71

2 Functions in Audio Toolbox

2-72

If DeltaWindowLength is set to an odd integer greater than 2, the following equation
defines their values:

i k- coeffs(k,:)

delta ==X

M
2K
k=—M

The function uses a least-squares approximation of the local slope over a region around
the coefficients of the current analysis window. The delta cepstral values are computed by
fitting the cepstral coefficients of neighboring analysis windows (M analysis windows
before the current analysis window and M analysis windows after the current analysis
window) to a straight line. For details, see [1].

Data Types: single | double

LogEnergy — Log energy usage
"Append’ (default) | ‘Replace’ | 'Ignore’

Log energy usage, specified as the comma-separated pair consisting of 'LogEnergy' and
"Append’', 'Replace’, or 'Ignore'. If unspecified, LogEnergy defaults to Append.

* 'Append' -- The function prepends the log energy to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs.

+ 'Replace' -- The function replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

* 'Ignore' -- The function does not calculate or return the log energy.

Data Types: char | string

Output Arguments

coeffs — Gammatone cepstral coefficients
matrix | array

Gammatone cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array,
where:

gtcc

* L -- Number of analysis windows the audio signal is partitioned into. The input size,
WindowLength, and OverlapLength control this dimension: L =
floor((size(audioIn,1l) - WindowLength))/(WindowLength -
OverlapLength) + 1.

* M —- Number of coefficients returned per frame. This value is determined by
NumCoeffs and LogEnergy.
When LogEnergy is set to:
* 'Append' -- The object prepends the log energy value to the coefficients vector.
The length of the coefficients vector is 1 + NumCoeffs.

* 'Replace' -- The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

+ 'Ignore' -- The object does not calculate or return the log energy. The length of
the coefficients vector is NumCoeffs.

* N -- Number of input channels (columns). This value is size(audioIn,2).
Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one analysis window to another, returned as an L-by-M matrix
or an L-by-M-by-N array. The delta array is the same size and data type as the coeffs
array. See coeffs for the definitions of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].

Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values, returned as an L-by-M matrix or an L-by-M-by-N array. The
deltaDelta array is the same size and data type as the coeffs and delta arrays. See
coeffs for the definitions of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].

Data Types: single | double

2-73

2 Functions in Audio Toolbox

2-74

loc — Location of the last sample in each analysis window
column vector

Location of last sample in each analysis window, returned as a column vector with the
same number of rows as coeffs.

Data Types: single | double

Algorithms

The gtcc function splits the entire data into overlapping segments. The length of each
analysis window is determined by WindowLength. The length of overlap between analysis
windows is determined by OverlapLength. The algorithm to determine the gammatone
cepstral coefficients depends on the filter domain, specified by FilterDomain. The
default filter domain is frequency.

Frequency-Domain Filtering

gtcc computes the gammatone cepstral coefficients, log energy values, delta, and delta-
delta values for each analysis window as per the algorithm described in
cepstralFeatureExtractor.

Time-Domain Filtering

If FilterDomain is specified as 'Time', the gtcc function uses the
gammatoneFilterBank to apply time-domain filtering. The basic steps of the gtcc
algorithm are outlined by the diagram.

gtcc

audioln

FreguencyRange WindowLength

fs l/ Overlaplength

L

Buffer Window STE

Buffer

STE

gammatoneFilterBank Buffer Window STE

— ¥ ¥

1
]
Window }
1
J

T

cepstral

logyg (%) per

ol
L 11T

| \

coefficients
Buffer] [Window } (STE

Filter Buffer Window Short Term coeffs

Energy /

i Buffer I—b Calculate Log Energy log energy

The FrequencyRange and sample rate (fs) parameters are set on the filter bank using
the name-value pairs input to the gtcc function. The number of filters in the gammatone
filter bank is defined as hz2erb(FrequencyRange(2)) -

hz2erb(FrequencyRange (1)).This roughly corresponds to placing a gammatone filter
every 0.9 mm in the cochlea.

The output from the gammatone filter bank is a multichannel signal. Each channel output
from the gammatone filter bank is buffered into overlapped analysis windows, as specified
by WindowLength and OverlapLength. Then a periodic Hamming window is applied to
each analysis window. The energy for each analysis window of data is calculated. The STE
of the channels are concatenated. The concatenated signal is then passed through a
logarithm function and transformed to the cepstral domain using a discrete cosine
transform (DCT).

The log-energy is calculated on the original audio signal using the same buffering scheme
applied to the gammatone filter bank output.

References

[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital
Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

[2] Shao, Yang, Zhaozhang Jin, Deliang Wang, and Soundararajan Srinivasan. "An

Auditory-Based Feature for Robust Speech Recognition." IEEE International
Conference on Acoustics, Speech and Signal Processing. 2009.

2-75

2 Functions in Audio Toolbox

[3] Valero, X., and E Alias. "Gammatone Cepstral Coefficients: Biologically Inspired
Features for Non-Speech Audio Classification." IEEE Transactions on Multimedia.
Vol. 14, Issue 6, 2012, pp. 1684-1689.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

cepstralFeatureExtractor |mfcc|pitch|voiceActivityDetector

Introduced in R2019a

2-76

spectralSpread

spectralSpread

Spectral spread for audio signals and auditory spectrograms

Syntax

spread spectralSpread(x, f)
spread spectralSpread(x, f,Name,Value)
[spread,centroid] = spectralSpread()

Description

spread = spectralSpread(x, f) returns the spectral spread of the signal, x, over
time. How the function interprets x depends on the shape of f.

spread = spectralSpread(x,f,Name,Value) specifies options using one or more
Name, Value pair arguments.

[spread,centroid] = spectralSpread() returns the spectral centroid.

Examples

Spectral Spread of Time-Domain Audio

Read in an audio file, calculate the spread using default parameters, and then plot the
results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
spread = spectralSpread(audioln,fs);

t = linspace(0,size(audioln,l)/fs,size(spread,l));
plot(t,spread)

xlabel('Time (s)')

ylabel('Spread (Hz)")

2-77

2 Functions in Audio Toolbox

6000 T T T T T T T

5000

4000

3000

Spread (Hz)

2000 1 ‘

" oot ol o J

Time (s)

Spectral Spread of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the spread of the mel spectrums over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);
spread = spectralSpread(s,cf);

plot(t,spread)

2-78

spectralSpread

xLlabel('Time (s)')
ylabel('Spread (Hz)")

3500 T T T T T T T

3000 M b

2500 b

z)

I 2000 .

1500 y

Spread (

1000 1

500 Jﬂ ﬂJ‘ ‘ P'I | ! Jﬂ

Al VL Wy L UL IL_.JIL

0 2 4 6 8 10 12 14
Time (s)

16

Specify Nondefault Parameters

Read in an audio file.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the spread of the power spectrum over time. Calculate the spread for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the spread calculation. Plot the results.

2-79

2 Functions in Audio Toolbox

Spread (Hz)

2-80

5000

4000

3000

2000

1000

spread = spectralSpread(audioIn,fs, ...
"Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(spread,1));
plot(t,spread)

xlabel('Time (s)')

ylabel('Spread (Hz)")

6000 T T T T T T T

T
——
—_—

{*(—i_
L
,{11._

f}-u'n' | I'WLJ h

."l J' J.\“ o

0 2 4 6 8 10 12 14
Time (s)

16

spectralSpread

Calculate Spectral Spread of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral spread calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral spread for the frame of audio.
3 Log the spectral spread for later plotting.

To calculate the spectral spread for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
spread = spectralSpread(audioIn,fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(spread)
end

plot(logger.Buffer)
ylabel('Spread (Hz)')

2-81

2 Functions in Audio Toolbox

000 T T T T T T

6000 7

5000 7

z)

H
B
=
=
=
T
i

Spread (

2000 - | ‘ 7

L
1000 | b
WLt e o oA il
’ 0 100 200 300 400 500 600 700

-%_ —
=
L

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralSpread.

* You want to calculate the spectral spread for overlapped data.
Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral spread is calculated for 50 ms frames with a 25 ms overlap.

2-82

spectralSpread

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

spread = spectralSpread(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(spread)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Spread (Hz)"')

2-83

2 Functions in Audio Toolbox

6000 T T T T T T

5000 7

4000 7

3000

Spread (Hz)

2000 | ‘

o NLLJ«JLWJ ﬁM o) N L1 \JLLMWTIL |

D i i
100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-84

spectralSpread

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-85

2 Functions in Audio Toolbox

2-86

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral spread is calculated for the one-sided power spectrum.

* 'magnitude’' -- The spectral spread is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

spread — Spectral spread (Hz)
scalar | vector | matrix

spectralSpread

Spectral spread in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral spread of a window of x. Each column of spread corresponds
to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid

corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms

The spectral spread is calculated as described in [1]:

b2

) _E (fx = 1)k

spread =

where

* fi is the frequency in Hz corresponding to bin k.
* s, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral spread.

* u; is the spectral centroid, calculated as described by the spectralCentroid
function.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

2-87

2 Functions in Audio Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralCentroid | spectralKurtosis | spectralSkewness

Topics
“Spectral Descriptors”

Introduced in R2019a

2-88

spectralSlope

spectralSlope

Spectral slope for audio signals and auditory spectrograms

Syntax

slope
slope

spectralSlope(x, f)
spectralSlope(x, f,Name,Value)

Description

slope = spectralSlope(x, f) returns the spectral slope of the signal, x, over time.
How the function interprets x depends on the shape of f.

slope = spectralSlope(x,f,Name,Value) specifies options using one or more
Name, Value pair arguments.

Examples

Spectral Slope of Time-Domain Audio

Read in an audio file, calculate the slope using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
slope = spectralSlope(audioln,fs);

t = linspace(0,size(audioIn,l)/fs,size(slope,l));
plot(t,slope)

xlabel('Time (s)')

ylabel('Slope')

2-89

2 Functions in Audio Toolbox

Kot Wk I"'""""'| (""ﬂ] Ii"“"""|||’ {""ﬂl f"""ﬁﬂ’r““* FaaT:
|

__.15 i i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

Spectral Slope of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the slope of the mel spectrogram over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);
slope = spectralSlope(s,cf);

plot(t,slope)

2-90

spectralSlope

xLlabel('Time (s)')
ylabel('Slope')

-3
10
0.5 : :

Slope

_3 i i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the slope of the magnitude spectrum over time. Calculate the slope for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the slope calculation. Plot the results.

2-91

2 Functions in Audio Toolbox

slope = spectralSlope(audioln,fs,

'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(slope,l));

plot(t,slope)

xLlabel('Time (s)')
ylabel('Slope')

0 flu_ﬁ

|
02k |

04r |

J

™ ‘ﬁ Bmina

| |
|

e

2-92

Time (s)

10 12

14

16

spectralSlope

Calculate Spectral Slope of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral slope calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral slope for the frame of audio.
3 Log the spectral slope for later plotting.

To calculate the spectral slope for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
slope = spectralSlope(audioIn,fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(slope)
end

plot(logger.Buffer)
ylabel('Slope')

2-93

2 Functions in Audio Toolbox

2-94

0 %1078 | | _ | |
p— =7 p—
e llr-*"“‘” l(""\‘ ‘|r “‘|| IJ““'H llr"“’”ilﬁ (h”|| \r, y ‘ l| '“] ||!" [
|I A / | || || I
0.5 | ‘ ‘ J ' ‘ J i
| | |
| |
A5F \ 1
2 -
0 1 EII'D 2EII'EI' 3EII'EI' 4EII-EI' atlm EEII'D 700

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralSlope.

* You want to calculate the spectral slope for overlapped data.
Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral slope is calculated for 50 ms frames with a 25 ms overlap.

spectralSlope

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

slope = spectralSlope(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(slope)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Slope')

2-95

2 Functions in Audio Toolbox

0 — - ~ e ~h ¢
(BRRRENRAR

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-96

spectralSlope

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-97

2 Functions in Audio Toolbox

2-98

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
'magnitude’ (default) | 'power!

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral slope is calculated for the one-sided power spectrum.

* 'magnitude’ -- The spectral slope is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

slope — Spectral slope
scalar | vector | matrix

spectralSlope

Spectral slope in Hz, returned as a scalar, vector, or matrix. Each row of slope
corresponds to the spectral slope of a window of x. Each column of slope corresponds to
an independent channel.

Algorithms

The spectral slope is calculated as described in [1]:

by
_2 (fx = 1f)(sk — ns)

slope =

1b
; (fi— Ilf)

where

* fi is the frequency in Hz corresponding to bin k.
* is the mean frequency.

* s, is the spectral value at bin k.

* 1 is the mean spectral value.

* b, and b, are the band edges, in bins, over which to calculate the spectral slope.

References

[1] Lerch, Alexander. An Introduction to Audio Content Analysis Applications in Signal
Processing and Music Informatics. Piscataway, NJ: IEEE Press, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-99

2 Functions in Audio Toolbox

2-100

See Also

spectralCrest | spectralDecrease

Topics
“Spectral Descriptors”

Introduced in R2019a

spectralSkewness

spectralSkewness

Spectral skewness for audio signals and auditory spectrograms

Syntax

skewness spectralSkewness(x, f)
skewness spectralSkewness(x, f,Name,Value)
[skewness,spread, centroid] = spectralSkewness()

Description

skewness = spectralSkewness(x, f) returns the spectral skewness of the signal, x,
over time. How the function interprets x depends on the shape of f.

skewness = spectralSkewness(x, f,Name,Value) specifies options using one or
more Name, Value pair arguments.

[skewness,spread,centroid] = spectralSkewness() returns the spectral
spread and spectral centroid.

Examples

Spectral Skewness of Time-Domain Audio

Read in an audio file, calculate the skewness using default parameters, and then plot the
results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
skewness = spectralSkewness(audiolIn, fs);

t = linspace(0,size(audioln,l)/fs,size(skewness,1));
plot(t, skewness)

xlabel('Time (s)')

ylabel('Skewness"')

2-101

2 Functions in Audio Toolbox

80 T T T T T T T

Skewness

Time (s)

Spectral Skewness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the skewness of the mel spectrogram over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

[s,cf,t] melSpectrogram(audioIn,fs);

skewness spectralSkewness(s,cf);

plot(t,skewness)

2-102

spectralSkewness

Skewness

xLlabel('Time (s)')
ylabel('Skewness"')

40 1 b

20 b

—1"} i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the skewness of the power spectrum over time. Calculate the skewness for 50
ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the skewness calculation. Plot the results.

2-103

2 Functions in Audio Toolbox

skewness = spectralSkewness(audioIn,fs, ...
'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(skewness,1));
plot(t, skewness)

xLlabel('Time (s)')

ylabel('Skewness"')

40 %W

Skewness

2-104

14

16

spectralSkewness

Calculate Spectral Skewness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral skewness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral skewness for the frame of audio.
3 Log the spectral skewness for later plotting.

To calculate the spectral skewness for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
skewness = spectralSkewness(audioIn, fileReader.SampleRate,
'Window',win,
‘OverlapLength',0);
logger(skewness)
end

plot(logger.Buffer)
ylabel('Skewness')

2-105

2 Functions in Audio Toolbox

BD T T T T T T

Skewness

0 100 200 300 400 500 600 FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralSkewness.

* You want to calculate the spectral skewness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral skewness is calculated for 50 ms frames with a 25 ms overlap.

2-106

spectralSkewness

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

skewness = spectralSkewness(audioBuffered, fs,

'Window',win,

'OverlapLength',0);

logger(skewness)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Skewness"')

2-107

2 Functions in Audio Toolbox

80

70 r 7
60 _‘ ! 7
50 H

wl ’| | ' |f~| i “‘.'1"1]

30§ '

Skewness

o] |

—
——
e ———
1 1

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-108

spectralSkewness

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-109

2 Functions in Audio Toolbox

2-110

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral skewness is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral skewness is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

skewness — Spectral skewness
scalar | vector | matrix

spectralSkewness

Spectral skewness, returned as a scalar, vector, or matrix. Each row of skewness
corresponds to the spectral skewness of a window of x. Each column of skewness
corresponds to an independent channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds
to the spectral spread of a window of x. Each column of spread corresponds to an
independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms

The spectral skewness is calculated as described in [1]:

by
S (fr - m)’se

k =
skewness =

where

* fi is the frequency in Hz corresponding to bin k.
* s is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral skewness.

* 11 is the spectral centroid, calculated as described by the spectralCentroid
function.

* 11, is the spectral spread, calculated as described by the spectralSpread function.

2-111

2 Functions in Audio Toolbox

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralCentroid | spectralKurtosis | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2-112

spectralRolloffPoint

spectralRolloffPoint

Spectral rolloff point for audio signals and auditory spectrograms

Syntax

rolloffPoint = spectralRolloffPoint(x,f)
rolloffPoint = spectralRolloffPoint(x, f,Name,Value)
Description

rolloffPoint = spectralRolloffPoint(x, f) returns the spectral rolloff point of
the signal, x, over time. How the function interprets x depends on the shape of f.

rolloffPoint = spectralRolloffPoint(x,f,Name,Value) specifies options using
one or more Name, Value pair arguments.

Examples

Spectral Rolloff Point of Time-Domain Audio

Read in an audio file, calculate the rolloff point using default parameters, and then plot
the results.

[audioIn, fs]
rolloffPoint

audioread('Counting-16-44pl-mono-15secs.wav');
spectralRolloffPoint(audioIn, fs);

t = linspace(0,size(audioIn,l)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)

xlabel('Time (s)')

ylabel('Rolloff Point (Hz)"')

2-113

2 Functions in Audio Toolbox

181 4

z)
-l -
PR
T T
i i

=
3
T
1

Rolloff Point (H

o
[as]
T
[—
T
—
i

=
=2
T
E—
i

=
B
T
1

021

Spectral Rolloff Point of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the rolloff point of the mel spectrogram over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);
rolloffPoint = spectralRolloffPoint(s,cf);

plot(t,rolloffPoint)

2-114

spectralRolloffPoint

Rolloff Point (Hz)

xlabel('Time (s)')
ylabel('Rolloff Point (Hz)")

10000 T T T

8000

8000

000

6000

5000

4000 1

3000

2000

1000 I1

|

AN

“
L L

Time (s)

8

Specify Nondefault Parameters

Read in an audio file.

14

16

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the rolloff point of the power spectrum over time. Calculate the rolloff point for
50 ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2

for the rolloff point calculation. Plot the results.

2-115

2 Functions in Audio Toolbox

rolloffPoint = spectralRolloffPoint(audioIn,fs, ...
'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)

xLlabel('Time (s)')

ylabel('Rolloff Point (Hz)")

« 104

z)
= =
. o
T T

=
ra
T

=4
T

=
[=-u]
T
=
=

Rolloff Point (H

=
=]
T

=
I
T

0.2r ‘I

2-116

spectralRolloffPoint

Calculate Spectral Rolloff Point of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral rolloff point calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral rolloff point for the frame of audio.
3 Log the spectral rolloff point for later plotting.

To calculate the spectral rolloff point for only a given input frame, specify a window with
the same number of samples as the input, and set the overlap length to zero. Plot the
logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
rolloffPoint = spectralRolloffPoint(audioIn, fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(rolloffPoint)
end

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)"')

2-117

2 Functions in Audio Toolbox

« 10%

181 4

z)
-l -
B 0m
T T
i i

=

3
T
1

Rolloff Point (H

=

o

T
=
o

o
o
T
i

=
B
T
1

021

WL N J,. N L ’L L. tJh_ I).'L_._.JL

FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralRolloffPoint.

* You want to calculate the spectral rolloff point for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral rolloff point is calculated for 50 ms frames with a 25 ms overlap.

2-118

spectralRolloffPoint

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

rolloffPoint = spectralRolloffPoint(audioBuffered, fs,

'Window',win,

'OverlapLength',0);

logger(rolloffPoint)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)")

2-119

2 Functions in Audio Toolbox

x 104

181 4

—
o
T

I

=
.
T

1

z)
=
3
T

Rolloff Point (H

o
oo
T
=
—
i

o
o
T
i

=
B
T
1

D___*_J(L L e, - |, | b |W._'||-_._..‘.

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-120

spectralRolloffPoint

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

+ If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Window',hamming(256)

Threshold — Threshold of rolloff point
0.95 (default) | scalar in the range (0,1)

Threshold of rolloff point, specified as the comma-separated pair consisting of
'Threshold' and a scalar between zero and one, exclusive.

Data Types: single | double

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range

2-121

2 Functions in Audio Toolbox

[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral rolloff point is calculated for the one-sided power spectrum.

* 'magnitude’ -- The spectral rolloff point is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

2-122

spectralRolloffPoint

Output Arguments

rolloffPoint — Spectral rolloff point (Hz)
scalar | vector | matrix

Spectral rolloff point in Hz, returned as a scalar, vector, or matrix. Each row of

rolloffPoint corresponds to the spectral rolloff point of a window of x. Each column of
rolloffPoint corresponds to an independent channel.

Algorithms

The spectral rolloff point is calculated as described in [1]:

rolloffPoint = i

such that
i by
> sk=K > Sk
k = b1 k = b1
where

* 5, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral spread.

* k is the percentage of total energy contained between b; and i. You can set x using
Threshold.

References
[1] Scheirer, E., and M. Slaney, "Construction and Evaluation of a Robust Multifeature

Speech/Music Discriminator," IEEE International Conference on Acoustics,
Speech, and Signal Processing. Volume 2, 1997, pp. 1221-1224.

2-123

2 Functions in Audio Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2-124

spectralKurtosis

spectralKurtosis

Spectral kurtosis for audio signals and auditory spectrograms

Syntax

kurtosis spectralKurtosis(x, f)
kurtosis = spectralKurtosis(x,f,Name,Value)
[kurtosis,spread,centroid] = spectralKurtosis()

Description

kurtosis = spectralKurtosis(x, f) returns the spectral kurtosis of the signal, x,
over time. How the function interprets x depends on the shape of f.

kurtosis = spectralKurtosis(x,f,Name,Value) specifies options using one or
more Name, Value pair arguments.

[kurtosis,spread,centroid] = spectralKurtosis() returns the spectral
spread and spectral centroid.

Examples

Spectral Kurtosis of Time-Domain Audio

Read in an audio file, calculate the kurtosis using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
kurtosis = spectralKurtosis(audioIn,fs);

t = linspace(0,size(audioln,l)/fs,size(kurtosis,1));
plot(t,kurtosis)

xlabel('Time (s)"')

ylabel('Kurtosis')

2-125

2 Functions in Audio Toolbox

8000 T T T T T T T

F000 7

G000 T

5000 7

4000 4

1 4 1 l |U iL!J IJ|'
8 10 12 14

Time (s)

Kurtosis

3000

2000

1000

0 2 4 G 16

Spectral Kurtosis of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the kurtosis of the mel spectrogram over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

[s,cf,t]

melSpectrogram(audioIn,fs);

kurtosis spectralKurtosis(s,cf);

plot(t,kurtosis)

2-126

spectralKurtosis

Kurtosis

xLlabel('Time (s)')
ylabel('Kurtosis')

14000 T T T T T T T

12000 b

10000

8000

6000

4000

2000

i i L Ji d i a i U .)l J
0 2 4 6 8 10 12 14 16
Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the kurtosis of the power spectrum over time. Calculate the kurtosis for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the kurtosis calculation. Plot the results.

2-127

2 Functions in Audio Toolbox

kurtosis = spectralKurtosis(audioIn,fs, ...
'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),

'Range',[62.5,fs/21);

t = linspace(0,size(audioIn,l)/fs,size(kurtosis,1));

plot(t,kurtosis)
xLlabel('Time (s)')
ylabel('Kurtosis')

5000 T T

4500

4000 1

3500

2500 1

Kurtosis

1500

1000

N}

2-128

Time (s)

10

12

16

spectralKurtosis

Calculate Spectral Kurtosis of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral kurtosis calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral kurtosis for the frame of audio.
3 Log the spectral kurtosis for later plotting.

To calculate the spectral kurtosis for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
kurtosis = spectralKurtosis(audioIn, fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(kurtosis)
end

plot(logger.Buffer)
ylabel('Kurtosis')

2-129

2 Functions in Audio Toolbox

8000 T T T T T T

F000 7

G000 T

5000 7

4000

Kurtosis

3000

2000 7

1000 § r ‘

|.J | .J.laJ IJnlll .Ill ‘ | |¢|| Tl H‘|

0 100 200 300 400 500 600 FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralKurtosis.

* You want to calculate the spectral kurtosis for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral kurtosis is calculated for 50 ms frames with a 25 ms overlap.

2-130

spectralKurtosis

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

kurtosis = spectralKurtosis(audioBuffered, fs,

'Window',win,

'OverlapLength',0);

logger(kurtosis)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Kurtosis"')

2-131

2 Functions in Audio Toolbox

8000 T T T T T T

8000 1

7000 7

6000 7

5000 7

Kurtosis

-muu-‘]

!

=M e A S
A

d ! |ﬁ.

s
0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-132

spectralKurtosis

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-133

2 Functions in Audio Toolbox

2-134

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral kurtosis is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral kurtosis is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

kurtosis — Spectral kurtosis
scalar | vector | matrix

spectralKurtosis

Spectral kurtosis, returned as a scalar, vector, or matrix. Each row of kurtosis
corresponds to the spectral kurtosis of a window of x. Each column of kurtosis
corresponds to an independent channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds
to the spectral spread of a window of x. Each column of spread corresponds to an
independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms

The spectral kurtosis is calculated as described in [1]:

by
S (fi - m) sk

. k=
kurtosis =

where

* fi is the frequency in Hz corresponding to bin k.
* s, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral skewness.

* 11 is the spectral centroid, calculated as described by the spectralCentroid
function.

* 11, is the spectral spread, calculated as described by the spectralSpread function.

2-135

2 Functions in Audio Toolbox

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralCentroid | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2-136

spectralFlux

spectralFlux

Spectral flux for audio signals and auditory spectrograms

Syntax

flux
flux

spectralFlux(x, f)
spectralFlux(x, f,Name,Value)

Description

flux = spectralFlux(x, f) returns the spectral flux of the signal, X, over time. How
the function interprets x depends on the shape of f.

flux = spectralFlux(x, f,Name,Value) specifies options using one or more
Name, Value pair arguments.

Examples

Spectral Flux of Time-Domain Audio

Read in an audio file, calculate the flux using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
flux = spectralFlux(audioln,fs);

t = linspace(0,size(audioIn,l)/fs,size(flux,1));
plot(t, flux)

xlabel('Time (s)')

ylabel('Flux"')

2-137

2 Functions in Audio Toolbox

Flux

2-138

0.1 T T T T T T T

0.09 7
0.08r 7
0.07 1 7
0.06 7
0.0 b
0.04 7
0.03 7

0.02r

wli’k. .\\ P\ L A A

0 2 4 6 8 10 12 14 16
Time (s)

Spectral Flux of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the flux of the mel spectrogram over time. Plot the results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);
flux = spectralFlux(s,cf);

plot(t, flux)

spectralFlux

xlabel('Time (s)')
ylabel('Flux")

15'} T T T T T T T

140 7

120 1 4

100 4

80 b

Flux

40 | -

20

0 2 4 6 8 10 12 14 16
Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the flux of the power spectrum over time. Calculate the flux for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flux
calculation. Plot the results.

2-139

2 Functions in Audio Toolbox

Flux

2-140

flux = spectralFlux(audiolIn,fs,
'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(flux,1));
plot(t, flux)

xLlabel('Time (s)')

ylabel('Flux")

D. DE T T T T T T T

0.0

0.04

0.03T1

0.02 "

0.01f | . ‘ | |

16

spectralFlux

Calculate Spectral Flux of Streaming Audio

Spectral flux measures the change in consecutive spectrums. To calculate spectral flux for
a streaming audio signal, you must input at least two frames of audio data.

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.AsyncBuffer to buffer audio into overlapped frames. Create a dsp.SignalSink to
log the spectral flux calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
buff = dsp.AsyncBuffer;
logger = dsp.SignalSink;

In an audio stream loop:

Read in a frame of audio data from your source.
Write the audio data to a dsp.AsyncBuffer

If a frame of data is available from the buffer, read a frame and one hop of data, with
overlap equal to samples per frame. This represents the two most recent audio
frames.

Calculate the spectral flux for the two most recent audio frames.

5 Log the spectral flux for later plotting. Because flux is defined by a current frame and
a previous frame, and because the condition before the first frame is unknown to the
function, spectral flux outputs a flux of zero for the first frame. Log only the second
value output from spectralFlux.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame+samplesPerHop, samplesPerFrame);
flux = spectralFlux(audioBuffered, fs,

2-141

2 Functions in Audio Toolbox

'Window',win,
'OverlapLength',samplesOverlap);
logger(flux(end))
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flux")

2-142

spectralFlux

Flux

0.16 T T T T T T

0141 7

011 7

0.08r 7

0.06 1

0.04 7

0.02 H | ‘ *l‘ |1| I n || ‘ -

lL ”Jl‘l JL ||11 ."Ix I

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-143

2 Functions in Audio Toolbox

2-144

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

+ If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Window',hamming(256)

NormType — Norm type
2 (default) | 1

Norm type used to calculate, specified as the comma-separated pair consisting of
"NormType' and 2 or 1.

Data Types: single | double

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range

spectralFlux

[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral flux is calculated for the one-sided power spectrum.
* 'magnitude’' -- The spectral flux is calculated for the one-sided magnitude spectrum.

Data Types: char | string

2-145

2 Functions in Audio Toolbox

Output Arguments

flux — Spectral flux (Hz)
scalar | vector | matrix

Spectral flux in Hz, returned as a scalar, vector, or matrix. Each row of flux corresponds
to the spectral flux of a window of x. Each column of flux corresponds to an independent

channel.
Algorithms
The spectral flux is calculated as described in [1]:
by 1/P
fluxt) = | S |s(t) = st = D[P
k=b1

where

* s, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral flux.
* Pis the norm type. You can specify the norm type using NormType.

References

[1] Scheirer, E., and M. Slaney. "Construction and Evaluation of a Robust Multifeature
Speech/Music Discriminator." IEEE International Conference on Acoustics,
Speech, and Signal Processing. Volume 2, 1997, pp. 1221-1224.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-146

spectralFlux

See Also

integratedLoudness | spectralCentroid | splMeter

Topics
“Spectral Descriptors”

Introduced in R2019a

2-147

2 Functions in Audio Toolbox

2-148

spectralFlatness

Spectral flatness for audio signals and auditory spectrograms

Syntax

flatness = spectralFlatness(x,f)

flatness = spectralFlatness(x,f,Name,Value)
[flatness,arithmeticMean,geometricMean] = spectralFlatness()
Description

flatness = spectralFlatness(x, f) returns the spectral flatness of the signal, X,
over time. How the function interprets x depends on the shape of f.

flatness = spectralFlatness(x, f,Name,Value) specifies options using one or
more Name, Value pair arguments.

[flatness,arithmeticMean,geometricMean] = spectralFlatness()
returns the spectral arithmetic mean and spectral geometric mean.

Examples

Spectral Flatness of Time-Domain Audio

Read in an audio file, calculate the flatness using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
flatness = spectralFlatness(audiolIn, fs);

t = linspace(0,size(audioln,l)/fs,size(flatness,1));
plot(t, flatness)

xlabel('Time (s)')

ylabel('Flatness"')

spectralFlatness

Flatness

0.25

0.2

0.1

0.05

Spectral Flatness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);

Calculate the flatness of the mel spectrogram over time. Plot the results.

flatness = spectralFlatness(s,cf);

2-149

2 Functions in Audio Toolbox

plot(t,flatness)
xLlabel('Time (s)')
ylabel('Flatness"')

D4‘ T T T T T T T

0.35T

0.3r

0.251

Flathess
-]
%]
T

=

-

on
T

i

L=

=
T

i

0.05 | w | ! 7

My | e Y . | NJ P'N-'"l_ | [i i ‘lj-ul lwl.h_nl |
0 2 4 i) 8 10 12 14 16
Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the flatness of the power spectrum over time. Calculate the flatness for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the flatness calculation. Plot the results.

2-150

spectralFlatness

Flathess

flatness = spectralFlatness(audioln, fs,
"Window',hamming(round(0.05*fs)),
'OverlaplLength', round(0.025*fs),
'‘Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(flatness,1));
plot(t,flatness)

xlabel('Time (s)')

ylabel('Flatness"')

D25 T T T T T T T

0.051

A .mjlm_qﬂulﬂ_._lﬂnl Al

2-151

2 Functions in Audio Toolbox

2-152

Calculate Spectral Flatness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral flatness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral flatness for the frame of audio.
3 Log the spectral flatness for later plotting.

To calculate the spectral flatness for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
audioIn = fileReader();
flatness = spectralFlatness(audioIn, fileReader.SampleRate,
'Window',win,
'OverlapLength',0);
logger(flatness)
end

plot(logger.Buffer)
ylabel('Flatness"')

spectralFlatness

Flatness

0.25 T T T T T T

021

0.05 7

| ‘

I R

400 500 600 FO0

L
" i P | .ff'- A . 1
0 100 200 300

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralFlatness.

* You want to calculate the spectral flatness for overlapped data.
Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral flatness is calculated for 50 ms frames with a 25 ms overlap.

2-153

2 Functions in Audio Toolbox

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

flatness = spectralFlatness(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(flatness)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flatness"')

2-154

spectralFlatness

Flatness

0.25 T T T T T T

021

0.05 |

il J _J|.n. \,ﬂ. |th|

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-155

2 Functions in Audio Toolbox

2-156

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

spectralFlatness

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral flatness is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral flatness is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

flatness — Spectral flatness
scalar | vector | matrix

2-157

2 Functions in Audio Toolbox

2-158

Spectral flatness, returned as a scalar, vector, or matrix. Each row of flatness
corresponds to the spectral flatness of a window of x. Each column of flatness
corresponds to an independent channel.

arithmeticMean — Spectral arithmetic mean
scalar | vector | matrix

Spectral arithmetic mean, returned as a scalar, vector, or matrix. Each row of
arithmeticMean corresponds to the arithmetic mean of the spectrum of a window of x.
Each column of arithmeticMean corresponds to an independent channel.

geometricMean — Spectral geometric mean
scalar | vector | matrix

Spectral geometric mean, returned as a scalar, vector, or matrix. Each row of
geometricMean corresponds to the geometric mean of the spectrum of a window of x.
Each column of geometricMean corresponds to an independent channel.

Algorithms

The spectral flatness is calculated as described in [1]:

k=
flatness = I ~—
2

—_

b2 =b1y =Eb1

where

* 5, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral spread.

References

[1] Johnston, J.d. "Transform Coding of Audio Signals Using Perceptual Noise Criteria."
IEEE Journal on Selected Areas in Communications. Vol. 6, Number 2, 1988, pp.
314-323.

spectralFlatness

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also

spectralCrest

Topics
“Spectral Descriptors”

Introduced in R2019a

2-159

2 Functions in Audio Toolbox

2-160

spectralEntropy

Spectral entropy for audio signals and auditory spectrograms

Syntax

entropy
entropy

spectralEntropy(x,)
spectralEntropy(x, f,Name,Value)

Description

entropy = spectralEntropy(x, f) returns the spectral entropy of the signal, x, over
time. How the function interprets x depends on the shape of f.

entropy = spectralEntropy(x, f,Name,Value) specifies options using one or more
Name, Value pair arguments.

Examples

Spectral Entropy of Time-Domain Audio

Read in an audio file, calculate the entropy using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,l)/fs,size(entropy,1));
plot(t,entropy)

xlabel('Time (s)')

ylabel('Entropy"')

spectralEntropy

0.8

0.7

0.6

0.1

Entropy
=
tn

—

8 10 12 14 16
Time (s)

e
M3
B
=}

Spectral Entropy of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioln,fs);

Calculate the entropy of the mel spectrogram over time. Plot the results.

entropy = spectralEntropy(s,cf);

2-161

2 Functions in Audio Toolbox

plot(t,entropy)
xLlabel('Time (s)"')
ylabel('Entropy')

0.vr

0 2 4 6 8 10 12 14 16
Time (s)

Specify Nondefault Parameters
Read in an audio file.
[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Calculate the entropy of the power spectrum over time. Calculate the entropy for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the entropy calculation. Plot the results.

2-162

spectralEntropy

entropy = spectralEntropy(audioln,fs,
"Window',hamming(round(0.05*fs)),
'OverlapLength',round(0.025*fs),
'‘Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(entropy,1));

plot(t,entropy)
xLlabel('Time (s)')
ylabel('Entropy')

0.8 T T

0.7 r

03r

T

0.1

16

2-163

2 Functions in Audio Toolbox

2-164

Calculate Spectral Entropy of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral entropy calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

2 Calculate the spectral entropy for the frame of audio.

3 Log the spectral entropy for later plotting.

To calculate the spectral entropy for only a given input frame, specify a window with the

same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

while ~isDone(fileReader)

audioIn = fileReader();

entropy = spectralEntropy(audioIn,fileReader.SampleRate,
'Window',hamming(size(audioIn,l)),
'OverlapLength',0);

logger(entropy)

end

plot(logger.Buffer)
ylabel('Entropy"')

spectralEntropy

0.8 T T T T T T
0vr 1
1

0.6 | |

Entropy

ol (0 b N
y F“-MKW “’M W 'W

0.1

0 100 200 300 400 500 600 FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralEntropy.

* You want to calculate the spectral entropy for overlapped data.
Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral entropy is calculated for 50 ms frames with a 25 ms overlap.

2-165

2 Functions in Audio Toolbox

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

entropy = spectralEntropy(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(entropy)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Entropy")

2-166

spectralEntropy

DB T T T T T T

0.6 7

Entropy

o
D%w%mmMMuww

0.1

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-167

2 Functions in Audio Toolbox

2-168

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

spectralEntropy

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral entropy is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral entropy is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

entropy — Spectral entropy
scalar | vector | matrix

2-169

2 Functions in Audio Toolbox

2-170

Spectral entropy, returned as a scalar, vector, or matrix. Each row of entropy
corresponds to the spectral entropy of a window of x. Each column of entropy
corresponds to an independent channel.

Algorithms

The spectral entropy is calculated as described in [1]:

where

* &5, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral entropy.
References

[1] Misra, H., S. Ikbal, H. Bourlard, and H. Hermansky. "Spectral Entropy Based Feature
for Robust ASR." 2004 IEEE International Conference on Acoustics, Speech, and
Signal Processing.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

spectralEntropy

Introduced in R2019a

2-171

2 Functions in Audio Toolbox

2-172

spectralDecrease

Spectral decrease for audio signals and auditory spectrograms

Syntax

decrease = spectralDecrease(x,f)
decrease spectralDecrease(x, f,Name,Value)

Description

decrease = spectralDecrease(x, f) returns the spectral decrease of the signal, X,
over time. How the function interprets x depends on the shape of f.

decrease = spectralDecrease(x,f,Name,Value) specifies options using one or
more Name, Value pair arguments.

Examples

Spectral Decrease of Time-Domain Audio

Read in an audio file, calculate the decrease using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
decrease = spectralDecrease(audiolIn,fs);

t = linspace(0,size(audioIn,l)/fs,size(decrease,l));
plot(t,decrease)

xlabel('Time (s)')

ylabel('Decrease')

spectralDecrease

Decrease

_2-5 i i i i i i i

0 2 4 6 8 10 12 14 16
Time (s)

Spectral Decrease of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf] = melSpectrogram(audioln,fs);

Calculate the decrease of the mel spectrogram over time. Plot the results.

decrease = spectralDecrease(s,cf);

2-173

2 Functions in Audio Toolbox

Decrease

2-174

t = linspace(0,size(audioIn,l)/fs,size(decrease,l));
plot(t,decrease)

xLlabel('Time (s)')

ylabel('Decrease')

10 T T T T T T T

M

P
=
T
I

—BD i i i i i i i
0 2 4 6 8 10 12 14 16

Time (s)

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

spectralDecrease

Calculate the decrease of the magnitude spectrum over time. Calculate the decrease for
50 ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2
for the decrease calculation. Plot the results.

decrease = spectralDecrease(audioIn,fs, ...
'Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range',[62.5,fs/2]1);

t = linspace(0,size(audioIn,l)/fs,size(decrease,l));
plot(t,decrease)

xlabel('Time (s)')

ylabel('Decrease')

2-175

2 Functions in Audio Toolbox

Decrease

2-176

D4‘ T T T T T T T

__.15 i i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

Calculate Spectral Decrease of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral decrease calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

spectralDecrease

2 Calculate the spectral decrease for the frame of audio.
3 Log the spectral decrease for later plotting.

To calculate the spectral decrease for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

while ~isDone(fileReader)
audioIn = fileReader();
decrease = spectralDecrease(audioIn, fileReader.SampleRate,
'Window',hamming(size(audioIn,1l)),
'OverlapLength',0);
logger(decrease)
end

plot(logger.Buffer)
ylabel('Decrease')

2-177

2 Functions in Audio Toolbox

Decrease

2-178

D.4 T T T T T T

0.2 7

0 100 200 300 400 500 600 FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralDecrease.

* You want to calculate the spectral decrease for overlapped data.
Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral decrease is calculated for 50 ms frames with a 25 ms overlap.

spectralDecrease

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

decrease = spectralDecrease(audioBuffered, fs,
'Window',win,
'OverlapLength',0Q);

logger(decrease)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Decrease')

2-179

2 Functions in Audio Toolbox

D.4 T T T T T T

Decrease

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-180

spectralDecrease

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-181

2 Functions in Audio Toolbox

2-182

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
'magnitude’ (default) | 'power!

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral decrease is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral decrease is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

decrease — Spectral decrease
scalar | vector | matrix

spectralDecrease

Spectral decrease in Hz, returned as a scalar, vector, or matrix. Each row of decrease
corresponds to the spectral centroid of a window of x. Each column of decrease
corresponds to an independent channel.

Algorithms

The spectral decrease is calculated as described in [1]:

b2 s —spy

k=b21+1k‘1

decrease =

where

* s, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral decrease.

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest | spectralSlope

2-183

2 Functions in Audio Toolbox

Topics
“Spectral Descriptors”

Introduced in R2019a

2-184

spectralCrest

spectralCrest

Spectral crest for audio signals and auditory spectrograms

Syntax

crest spectralCrest(x, f)

crest spectralCrest(x, f,Name,Value)
[crest,spectralPeak,spectralMean] = spectralCrest()
Description

crest = spectralCrest(x,f) returns the spectral crest of the signal, x, over time.
How the function interprets x depends on the shape of f.

crest = spectralCrest(x,f,Name,Value) specifies options using one or more
Name, Value pair arguments.

[crest,spectralPeak,spectralMean] = spectralCrest() returns the
spectral peak and spectral mean.

Examples

Spectral Crest of Time-Domain Audio

Read in an audio file, calculate the crest using default parameters, and then plot the
results.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
crest = spectralCrest(audiolIn,fs);

t = linspace(0,size(audioln,l)/fs,size(crest,1));
plot(t,crest)

xlabel('Time (s)')

ylabel('Crest"')

2-185

2 Functions in Audio Toolbox

2-186

400

10071]

Time (s)

Spectral Crest of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[s,cf] = melSpectrogram(audioln,fs);

Calculate the crest of the mel spectrogram over time. Plot the results.

crest = spectralCrest(s,cf);

spectralCrest

t = linspace(0,size(audioIn,l)/fs,size(crest,1));
plot(t,crest)

xLlabel('Time (s)')

ylabel('Crest"')

35 T T T T T T T

25 1

Crest

ﬂ i i i i i i i
0 2 4 6 8 10 12 14 16

Time (s)

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

2-187

2 Functions in Audio Toolbox

2-188

Calculate the crest of the power spectrum over time. Calculate the crest for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the crest calculation. Plot the results.

crest = spectralCrest(audioIn,fs, ..
‘"Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range', [62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(crest,1));
plot(t,crest)

xlabel('Time (s)')

ylabel('Crest')

spectralCrest

Crest

N TR hE

600

500 | |

!
400 ¢ ‘

wi § |

200 |

M

- LT

gl

D i i i i i
0 2 4 G 8 10

Time (s)

Calculate Spectral Crest of Streaming Audio

12

14

16

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral crest calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');

logger = dsp.SignalSink;
In an audio stream loop:

1 Read in a frame of audio data.

2-189

2 Functions in Audio Toolbox

2-190

2 Calculate the spectral crest for the frame of audio.
3 Log the spectral crest for later plotting.

To calculate the spectral crest for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
audioIn = fileReader();
crest = spectralCrest(audioln,fileReader.SampleRate,
'Window',hamming(size(audioIn,1l)),
'OverlapLength',0);
logger(crest)
end

plot(logger.Buffer)
ylabel('Crest')

spectralCrest

400 T T T T T T

350 7

]

100 200 300 400 500 600 FO0

Use dsp.AsyncBuffer if

* The input to your audio stream loop has a variable samples-per-frame.

* The input to your audio stream loop has an inconsistent samples-per-frame with the
analysis window of spectralCrest.

* You want to calculate the spectral crest for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral crest is calculated for 50 ms frames with a 25 ms overlap.

2-191

2 Functions in Audio Toolbox

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop
audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

crest = spectralCrest(audioBuffered, fs,
'Window',win,
'OverlapLength',0);
logger(crest)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Crest (Hz)")

2-192

spectralCrest

mﬂ T T T T T T

800 1

100 1 h ;

0 100 200 300 400 500 600 FO0

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-193

2 Functions in Audio Toolbox

2-194

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

spectralCrest

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral crest is calculated for the one-sided power spectrum.

* 'magnitude’ -- The spectral crest is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

crest — Spectral crest
scalar | vector | matrix

2-195

2 Functions in Audio Toolbox

Spectral crest, returned as a scalar, vector, or matrix. Each row of crest corresponds to
the spectral crest of a window of x. Each column of crest corresponds to an independent
channel.

spectralPeak — Spectral peak
scalar | vector | matrix

Spectral peak, returned as a scalar, vector, or matrix. Each row of spectralPeak
corresponds to the spectral crest of a window of x. Each column of spectralPeak
corresponds to an independent channel.

spectralMean — Spectral mean
scalar | vector | matrix

Spectral crest, returned as a scalar, vector, or matrix. Each row of spectralMean

corresponds to the spectral crest of a window of x. Each column of spectralMean
corresponds to an independent channel.

Algorithms
The spectral crest is calculated as described in [1]:

crest = max(sk € [bl bz])

by - blkz Sk

where

* 5, is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral crest.

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

2-196

spectralCrest

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralFlatness | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2-197

2 Functions in Audio Toolbox

spectralCentroid

Spectral centroid for audio signals and auditory spectrograms

Syntax

centroid
centroid

spectralCentroid(x, f)
spectralCentroid(x, f,Name,Value)

Description

centroid = spectralCentroid(x, f) returns the spectral centroid of the signal, X,
over time. How the function interprets x depends on the shape of f.

centroid = spectralCentroid(x, f,Name,Value) specifies options using one or
more Name, Value pair arguments.

Examples

Spectral Centroid of Time-Domain Audio

Read in an audio file, calculate the centroid using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
centroid = spectralCentroid(audioln,fs);

t = linspace(0,size(audioIn,l)/fs,size(centroid,1));
plot(t,centroid)

xlabel('Time (s)')

ylabel('Centroid (Hz)"')

2-198

spectralCentroid

8000 : : :
7000 | | -

6000 [/ "' ll 1

Centroid (Hz)
=)
=]

(%]
=
=
o
T
i

2000]
1000 f]
' |
) L I S L L Lu.J | L x..J'\L.....J "
0 2 4 6 8 10 12 14 16

Time (s)

Spectral Centroid of Frequency-Domain Audio Data

Read in an audio file and then buffer the signal into 30 ms frames with 20 ms overlap.
Calculate the octave power spectrum using the poctave function.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
audioBuffered = buffer(audioIn, round(fs*0.03),round(fs*0.02), 'nodelay');
[p,cf] = poctave(audioBuffered, fs);

Calculate the centroid of the octave power spectrum over time. Plot the results.

centroid = spectralCentroid(p,cf);

2-199

2 Functions in Audio Toolbox

t = linspace(0,size(audioIn,l)/fs,size(centroid,1));
plot(t,centroid)
xLlabel('Time (s)')
ylabel('Centroid (Hz)')

8000

000

6000

Centroid (Hz)
=)
3

sl

!

“U LJ i "
" od U L
2 4

6 8 10
Time (s)

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] =

2-200

14

16

audioread('Counting-16-44pl-mono-15secs.wav');

spectralCentroid

Calculate the centroid of the power spectrum over time. Calculate the centroid for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the centroid calculation. Plot the results.

centroid = spectralCentroid(audiolIn,fs,
'"Window',hamming(round(0.05*fs)),
'OverlapLength', round(0.025*fs),
'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,l)/fs,size(centroid,1));
plot(t,centroid)

xlabel('Time (s)')

ylabel('Centroid (Hz)"')

2-201

2 Functions in Audio Toolbox

8000 : : : : : : :
7000 | |r .

6000 f | | -

Centroid (Hz)
=)
=]

3000 b
2000 b
1000 | ‘ L' |
ﬁl '| |
D _.LJrII-.__.|;._. i..__l S _I.J 'J'-«_.__J Ih-'ku-._.. I'Tn-.. . J e I'\-M._ I‘JL.J |_____Jh:L B I-.
1] 2 4 6 a8 10 12 14 16

Calculate Spectral Centroid of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral centroid calculation.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

2-202

spectralCentroid

2 Calculate the spectral centroid for the frame of audio.
3 Log the spectral centroid for later plotting.

To calculate the spectral centroid for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
audioIn = fileReader();
centroid = spectralCentroid(audioIn, fileReader.SampleRate,
'Window',hamming(size(audioIn,1)),
'OverlapLength',0);
logger(centroid)
end

plot(logger.Buffer)
ylabel('Centroid (Hz)")

2-203

2 Functions in Audio Toolbox

8000 : : : : : :
7000 ” 1
|

6000 I W | 1

Centroid (Hz)
L B
= 2
= =

2000

1000 i
wﬂ*w-ﬁ—ﬂl‘\—.-..-J .'J}a-«.,w‘ mﬁa‘ n"xﬂm, !', Lyl IIL;jJM u.___;Jhk‘L L,

D i
0 100 200 300 400 500 600 FO0

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent
samples-per-frame with the analysis window size of spectralCentroid, or if you want
to calculate the spectral centroid for overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.
buff = dsp.AsyncBuffer;

reset(logger)

release(fileReader)

Specify that the spectral centroid is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

2-204

spectralCentroid

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;
win = hamming(samplesPerFrame);
while ~isDone(fileReader)

audioIn = fileReader();

write(buff,audioln);

while buff.NumUnreadSamples >= samplesPerHop

audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

centroid = spectralCentroid(audioBuffered, fs,
'Window',win,
'OverlapLength',0);

logger(centroid)
end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Centroid (Hz)')

2-205

2 Functions in Audio Toolbox

8000 : :
7000 f .

6000 [r -

Centroid (Hz)
=)
=

3000 .
2000 r .
1000 .
J \ ’ \
0 r'h.-l"rll'ﬂLv-ﬁ-“f | I"ﬁ"\-’,'\u—J [T | I"“'-w-.u \ T . a l,—..,—«}l e L
0 100 200 300 400 500 600 700

Input Arguments

x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.

Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2-206

spectralCentroid

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

» If fis a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

« If fis a vector, X is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

* The number of rows of X, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if X is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round (f*0.02) (default) | non-negative scalar

2-207

2 Functions in Audio Toolbox

2-208

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlaplLength' and an integer in the range [0,
size(Window,1)).

Data Types: single | double

FFTLength — Number of bins in DFT
numel (Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of ' FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.

Data Types: single | double

Range — Frequency range (Hz)
[0, /2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].

Data Types: single | double

SpectrumType — Spectrum type
"power' (default) | 'magnitude’

Spectrum type, specified as the comma-separated pair consisting of ' SpectrumType'
and 'power' or 'magnitude’:

* 'power' -- The spectral centroid is calculated for the one-sided power spectrum.

* 'magnitude' -- The spectral centroid is calculated for the one-sided magnitude
spectrum.

Data Types: char | string

Output Arguments

centroid — Spectral centroid (Hz)
scalar | vector | matrix

spectralCentroid

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms
The spectral centroid is calculated as described in [1]:
by
:Eb fSk
centroid = +
2
D Sk
k=b1

where

* fi is the frequency in Hz corresponding to bin k.
* s is the spectral value at bin k.
* b, and b, are the band edges, in bins, over which to calculate the spectral centroid.

References

[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and
Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

spectralKurtosis | spectralSkewness | spectralSpread

2-209

2 Functions in Audio Toolbox

Topics
“Spectral Descriptors”

Introduced in R2019a

2-210

hz2mel

hz2mel

Convert from hertz to mel scale

Syntax

mel = hz2erb(hz)

Description

mel = hz2erb(hz) converts values in hertz to values on the mel frequency scale.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.
b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.
melVect = linspace(b(1l),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase
exponentially.

plot(melVect,hzVect, '0")
title('Mel vs Hz')
xlabel('Mel")
ylabel('Hz")

grid on

2-211

2 Functions in Audio Toolbox

Mel vs Hz
8000

8000 O

7000 7

6000 7

5000 7

Hz
o

4000 [o]

3000 o 1

2000 1 (8] 7

1000

[al®] 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Mel

Input Arguments

hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double

2-212

hz2mel

Output Arguments

mel — Output frequency on mel scale
scalar | vector | matrix | multidimensional array

Output frequency on the mel scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.

Data Types: single | double

Algorithms

The frequency conversion from Hz to the mel scale uses the following formula:

hz
mel = 259510g10(1 ; W)

References

[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA:
Addison-Wesley Publishing Company, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | mel2hz

Introduced in R2019a

2-213

2 Functions in Audio Toolbox

2-214

hz2bark

Convert from hertz to Bark scale

Syntax

bark = hz2erb(hz)

Description

bark = hz2erb(hz) converts values in hertz to values on the Bark frequency scale.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.
b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.
barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect, '0")
title('Bark vs Hz'")
xlabel('Bark")
ylabel('Hz")

grid on

hz2bark

Hz

Bark vs Hz

i)

8000 u T T
7000
G000
5000
4000
3000 &
2000 o

o
o
1000 | oC

Input Arguments

hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

20

25

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double

2-215

2 Functions in Audio Toolbox

Output Arguments

bark — Output frequency on Bark scale
scalar | vector | matrix | multidimensional array

Output frequency on the Bark scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.

Data Types: single | double

Algorithms

The frequency conversion from Hz to the Bark scale uses the following formula:

(26.81)(h2)
1960 + hz

if :bark < 2 - bark = bark + (0.15)(2 — bark)
if:bark > 20.1 = bark = bark + (0.22)(bark — 20.1)

bark = —-0.53

The Bark value correction occurs after the conversion from Hz to the Bark scale.

References

[1] Traunmuller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale."
Journal for the Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97-100.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2erb | hz2mel | mel2hz

2-216

hz2bark

Introduced in R2019a

2-217

2 Functions in Audio Toolbox

hz2erb

Convert from hertz to equivalent rectangular bandwidth (ERB) scale

Syntax

erb = hz2erb(hz)

Description

erb = hz2erb(hz) converts values in hertz to values on the ERB frequency scale.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.
b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.
erbVect = linspace(b(1l),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect, '0")
title('ERB vs Hz')
xlabel('ERB")
ylabel('Hz")

grid on

2-218

hz2erb

Hz

i)

8000 : :
7000
6000 |
5000
4000 |
3000
2000 | o

1000 o
oo

ERB

Input Arguments

hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

30

35

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.

Data Types: single | double

2-219

2 Functions in Audio Toolbox

2-220

Output Arguments

erb — Output frequency on ERB scale
scalar | vector | matrix | multidimensional array

Output frequency on the ERB scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.

Data Types: single | double

Algorithms

The frequency conversion from Hz to the ERB scale uses the following formula:

erb = Alog1o(1 + hz(0.00437))
where

_1000log,(10)
= RADE3T)

References

[1] Glasberg, Brian R., and Brian C.]J. Moore. "Derivation of Auditory Filter Shapes from
Notched-Noise Data." Hearing Research. Vol. 47, Issues 1-2, 1990, pp. 103-138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2mel | mel2hz

hz2erb

Introduced in R2019a

2-221

2 Functions in Audio Toolbox

2-222

mel2hz

Convert from mel scale to hertz

Syntax

hz = mel2hz(mel)

Description

hz = mel2hz(mel) converts values on the mel frequency scale to values in hertz.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.
b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.
melVect = linspace(b(1l),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase
exponentially.

plot(melVect,hzVect, '0")
title('Mel vs Hz')
xlabel('Mel")
ylabel('Hz")

grid on

mel2hz

Hz

Mel vs Hz

8000 T T T T

8000

7000

6000

5000

4000 1 o

3000 o

2000 1 (8]

1000

0 500 1000 1500 2000
Mel

Input Arguments

mel — Input frequency on mel scale
scalar | vector | matrix | multidimensional array

2500

3000

Input frequency on the mel scale, specified as a scalar, vector, matrix, or multidimensional

array.

Data Types: single | double

2-223

2 Functions in Audio Toolbox

2-224

Output Arguments

hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as mel.

Data Types: single | double

Algorithms

The frequency conversion from the mel scale to Hz uses the following formula:

mel
hz = 700(102595 -1

References

[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA:
Addison-Wesley Publishing Company, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | hz2mel

Introduced in R2019a

bark2hz

bark2hz

Convert from Bark scale to hertz

Syntax

hz = bark2hz(bark)

Description

hz = bark2hz(bark) converts values on the Bark frequency scale to values in hertz.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.
b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.
barkVect = linspace(b(1l),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect, '0")
title('Bark vs Hz'")
xlabel('Bark")
ylabel('Hz")

grid on

2-225

2 Functions in Audio Toolbox

Bark vs Hz

i)

8000 T T T

7000

G000

5000

4000

Hz

3000 &

2000 o

1000

Input Arguments

bark — Input frequency on Bark scale
scalar | vector | matrix | multidimensional array

20

25

Input frequency on the Bark scale, specified as a scalar, vector, matrix, or

multidimensional array.

Data Types: single | double

2-226

bark2hz

Output Arguments

hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as bark.

Data Types: single | double

Algorithms

The frequency conversion from the Bark scale to Hz uses the following formula:

(bark — 0.3)
T 085

(bark + 4.422)
122

if:bark < 2 — bark =
if:bark > 20.1 - bark =

hz = 1960(bark + 0.53)

26.28 — bark

The Bark value correction occurs before the conversion from the Bark scale to Hz.

References

[1] Traunmiller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale."
Journal for the Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97-100.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-227

2 Functions in Audio Toolbox

See Also
erb2hz | hz2bark | hz2erb | hz2mel | mel2hz

Introduced in R2019a

2-228

erb2hz

erb2hz

Convert from equivalent rectangular bandwidth (ERB) scale to hertz

Syntax

hz = erb2hz(erb)

Description

hz = erb2hz(erb) converts values on the ERB frequency scale to values in hertz.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.
b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.
erbVect = linspace(b(1l),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase

exponentially.

plot(erbVect,hzVect, '0")
title('ERB vs Hz')
xlabel('ERB")
ylabel('Hz")

grid on

2-229

2 Functions in Audio Toolbox

i)

8000 T T

7000 7

G000 T

5000 o 7

4000

Hz
0

3000

2000

2

1000

0 5 10 15 20 25 30 35
ERB

Input Arguments

erb — Input frequency on ERB scale
scalar | vector | matrix | multidimensional array

Input frequency on the equivalent rectangular band (ERB) scale, specified as a scalar,
vector, matrix, or multidimensional array.

Data Types: single | double

2-230

erb2hz

Output Arguments

hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as erb.

Data Types: single | double

Algorithms

The frequency conversion from the ERB scale to Hz uses the following formula:
erb
hz = 1004 -1
0.00437
where

_1000log,(10)
= 4TA37)

References

[1] Glasberg, Brian R., and Brian C.]J. Moore. "Derivation of Auditory Filter Shapes from
Notched-Noise Data." Hearing Research. Vol. 47, Issues 1-2, 1990, pp. 103-138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | hz2bark | hz2erb | hz2mel | mel2hz

2-231

2 Functions in Audio Toolbox

Introduced in R2019a

2-232

mls

mls

Maximum length sequence

Syntax

excitation = mls

excitation = mls(L)

excitation = mls(L,Name,Value)
Description

excitation = mls returns an excitation signal generated using the maximum length
sequence (MLS) technique. This type of sequence is a pseudo-random binary sequence.

excitation = mls (L) specifies the output length L of the excitation signal.

excitation = mls(L,Name,Value) specifies options using one or more Name, Value
pair arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using
the known impulse response.

[irKnown, fs] = audioread('ChurchImpulseResponse-16-44pl-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal
must be longer than the impulse response. Note that the length of the MLS excitation is
extended to the next power of two minus one.

2-233

2 Functions in Audio Toolbox

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

Excitation

0.6 T T

%107

Replicate the excitation signal four times to measure the average of three measurements.
The recording of the first MLS sequence does include all the impulse response
information, so impzest discards it as a warmup run. Pad the excitation signal with zeros
to account for the filter latency.

numRuns = 4;
excrep repmat(excitation,numRuns,1);
excrep [excrep;zeros(numel(irKnown)+1,1)1];

2-234

mls

Pass the excitation signal through the known filter and then add noise to model a real-
word recording (system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);

rec = rec + 0.1*randn(size(rec));
rec = rec(numel(irKnown)+2:end,:);
plot(rec)

title('System Response')

System Response

15 T

0 2 4 6 8 10 12
%107

In a real-world scenario, the MLS sequence is played back in the system under test while
recording. The recording would be cut so that it begins at the moment the MLS sequence
is picked-up and truncated to last the duration of the repeated sequence.

2-235

2 Functions in Audio Toolbox

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Plot the known impulse response and the simulation of the
estimated impulse response for comparison.

irEstimate = impzest(excitation,rec);
samples = l:numel(irKnown);
plot(samples,irEstimate(samples), 'bo"',

samples,irKnown(samples), 'm.")

legend('Known impulse response','Simulation of estimated impulse response')

0.8 T T T T

2 Known impulse response

06 B $ Simulation of estimated impulse response

25
% 10°

2-236

mls

Generate MLS Signal

Generate an MLS signal that is 2°14-1 samples long and has a level of -5 dB.
L = 2714-1;

level = -5;
excitation = mls(L, 'ExcitationLevel', level);

Visualize the excitation in time and time-frequency. For the time-domain plot, plot only the
first 200 samples for visibility. The pattern is constant.

plot(excitation(1:200))

0.6 T T T

0.4 1 1

o2 ;

0.2 7

04r

UL U TN TIOURTROT T gL beu

—D_E i i i i i i i i i
0 20 40 60 80 100 120 140 180 180 200

spectrogram(excitation,512,0,1024, 'yaxis"')

2-237

2 Functions in Audio Toolbox

1 T T T |
B 09l 11 |
= =20
=R]
T 0.8 _
@ 1-40 T
@07} 1 E
2 2
& ' B
— 06 1 60 &
X @
EDE' 1 80 z
£ g
2 2
:: D4 - -
o W =
@ 100 2
u_ el
- 03r 1 g
JaF]
M -120 &
© 0.2F 1
£
2041} { B 140
D i i i
0 5000 10000 15000

Samples

Input Arguments

L — Length of excitation signal
32767 (default) | scalar in the range [3,2%?)

Length of excitation signal to generate, specified as a scalar in the range [3,22°).

The requested output length L must be a power of two minus one. Otherwise, the output
length increases to the next valid length.

2-238

mls

Note If you use the excitation signal generated by the mls function to record and
estimate the impulse response of a system, then the length of the excitation signal must
be at least as long as the impulse response that you want to estimate.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'ExcitationLevel"', -5

ExcitationLevel — Level of the excitation signal to generate (dB)
scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range
[-42,0].

Data Types: single | double

Output Arguments

excitation — Excitation signal
column vector

Excitation signal generated using the maximum length sequence (MLS) technique,
returned as a column vector.

Data Types: single | double

References

[1] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of
Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246-262.

2-239

2 Functions in Audio Toolbox

See Also

Impulse Response Measurer | impzest | sweeptone

Introduced in R2018b

2-240

sweeptone

sweeptone

Exponential swept sine

Syntax

excitation = sweeptone()

excitation = sweeptone(swDur)
excitation =
excitation = sweeptone(swDur,silDur,fs)

(

(
sweeptone(swDur,silDur)

(

(

excitation = sweeptone(,Name,Value)

Description

excitation = sweeptone() returns an excitation signal generated using the
exponential swept sine (ESS) technique. By default, the signal has a 6-second duration,
followed by 4 seconds of silence, for a sample rate of 44100 Hz.

excitation = sweeptone(swDur) specifies the duration of the exponential swept sine
signal.

excitation = sweeptone(swDur,silDur) specifies the duration of the silence
following the exponential swept sine signal.

excitation = sweeptone(swDur,silDur, fs) specifies the sample rate of the sweep
tone as fs Hz.

excitation = sweeptone(,Name,Value) specifies options using one or more
Name, Value pair arguments, in addltlon to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

2-241

2 Functions in Audio Toolbox

excitation = sweeptone(2,1,44100);
plot(excitation)
title('Excitation')

Excitation
D.E T T T T T T

0.2

0 2 4 6 8 10 12 14
» 104

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to
model a real-world recording (system response).

[B,A] = butter(10,[.1 .71);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2-242

sweeptone

System Response

0 2 4 6 8 10 12 14
x 104

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Truncate the estimate to 100 points. Use impz to determine the
true impulse response of the system. Plot the true impulse response and the estimated
impulse response for comparison.

irEstimate
irEstimate

impzest(excitation,nrec);
irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate,
0:100,irTrue, 'ro')

legend('True impulse response', 'Estimated impulse response')

2-243

2 Functions in Audio Toolbox

2-244

D_ 5 T T T T T T T T T
True impulse response
0.4 F 1 Estimated impulse response |
0.3r1 b
]
0.27r1 b

0 10 20 30 40 50 G0 70 80 90 100

Generate ESS Signal

Generate an exponential swept sine (ESS) signal with a 3-second sweep that goes from 20
Hz to 20 kHz, and ends with a 2-second silence. Specify the sample rate as 48 kHz.

fs = 48e3;
excitation = sweeptone(3,2,fs, 'SweepFrequencyRange', [20 20e3]);

Visualize the excitation in time and time-frequency.

t = (0:numel(excitation)-1)/fs;
plot(t,excitation)
xlabel('Time (s)"')

sweeptone

D.E T T T T T T T T T

0 0.5 1 15 2 25 3 35 4 45 5
Time (s)

spectrogram(excitation,512,0,1024,fs, 'yaxis"')

2-245

2 Functions in Audio Toolbox

o)
= I
15 4
i =
> &
= 10 =
E._J]
L g
(2l

5

0

05 1 15 2 25 3 35 4 45
Time (s)

Input Arguments

swDur — Duration of exponential swept sine signal (s)
6 (default) | scalar in the range [0.5,15]

Duration of exponential swept sine signal in seconds, specified as a scalar in the range
[0.5,15].

The total duration of the excitation signal must be less than or equal to 15 seconds:
swDur + silDur < 15.

2-246

sweeptone

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

silDur — Duration of silence after exponential swept sine signal (s)
4 (default) | scalar in the range (0,14.5]

Duration of silence after exponential swept sine, specified as a scalar in the range
(0,14.5].

The total duration of the excitation signal must be less than or equal to 15 seconds:
swDur + silDur = 15.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'ExcitationLevel"', -5

ExcitationLevel — Level of excitation signal to generate (dB)
-6 (default) | scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range
[-42,0].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

SweepFrequencyRange — Range of sweep frequency (Hz)
[10 22000] | two-element positive row vector

2-247

2 Functions in Audio Toolbox

2-248

Range of sweep frequency in Hz, specified as a two-element row vector. The sweep
frequency range can be specified low to high or high to low. That is, [10 22000] and
[22000 10] are both valid inputs. The largest value of the sweep frequency range must
be less than or equal to fs/2.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments

excitation — Excitation signal
column vector

Excitation signal generated using the ESS technique, returned as a column vector. The
length of the column vector is approximately (swDur+silDur)*fs samples.

Data Types: double
References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."

Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

See Also

Impulse Response Measurer | impzest | mls

Introduced in R2018b

interpolateHRTF

interpolateHRTF

3-D head-related transfer function (HRTF) interpolation

Syntax

interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions)
interpolatedHRTF = interpolateHRTF(___ ,Name,Value)

Description

interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions) returns the interpolated head-related transfer function
(HRTF) at the desired position.

interpolatedHRTF = interpolateHRTF(,Name, Value) specifies options using
one or more Name, Value pair arguments.

Examples

Render 3-D Audio on Headphones

Modify the 3-D audio image of a sound file by filtering it through a head-related transfer
function (HRTF). Set the location of the sound source by specifying the desired azimuth
and elevation.

load 'ReferenceHRTF.mat' hrtfData sourcePosition
hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

2-249

2 Functions in Audio Toolbox

2-250

Calculate the head-related impulse response (HRIR) using the VBAP algorithm at a
desired source position. Separate the output, interpolatedIR, into the impulse
responses for the left and right ears.

desiredAz 110;
desiredEl -45;
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition,
"Algorithm","VBAP");

leftIR = squeeze(interpolatedIR(:,1,:))";
rightIR = squeeze(interpolatedIR(:,2,:))";

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects and specify the filter coefficients using the head-related transfer
function interpolated impulse responses.

fileReader

= dsp.AudioFileReader('RockDrums-44pl-stereo-1lsecs.mp3');
deviceWriter =

audioDeviceWriter('SampleRate', fileReader.SampleRate);

leftFilter = dsp.FIRFilter('Numerator',leftIR);
rightFilter = dsp.FIRFilter('Numerator',rightIR);

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the stereo audio data through the left and right HRIR filters, respectively.
3 Concatenate the left and right channels and write the audio to your output device.

while ~isDone(fileReader)
audioIn = fileReader();

leftChannel = leftFilter(audioIn(:,1));
rightChannel = rightFilter(audioIn(:,2));

deviceWriter([leftChannel, rightChannel]);
end

As a best practice, release your System objects when complete.

interpolateHRTF

release(deviceWriter)
release(fileReader)

Model Moving Source Using HRIR Filtering

Create arrays of head-related impulse responses corresponding to desired source
positions. Filter mono input to model a moving source.

Load the ARI HRTF dataset. Cast the hrtfData to type double, and reshape it to the
required dimensions: (number of source positions)-by-2-by-(number of HRTF samples).
Use the first two columns of the sourcePosition matrix only, which correspond to the
azimuth and elevation of the source in degrees.

load 'ReferenceHRTF.mat' hrtfData sourcePosition
hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Specify the desired source positions and then calculate the HRTF at these locations using
the interpolateHRTF function. Separate the output, interpolatedIR, into the
impulse responses for the left and right ears.

desiredAz [-120;-60;0;60;120;0;-120;1201;
desiredEl [-90;90;45;0;-45;0;45;451;
desiredPosition = [desiredAz desiredEl];

interpolatedIR interpolateHRTF(hrtfData, sourcePosition,desiredPosition);

leftIR = squeeze(interpolatedIR(:,1,:));
rightIR = squeeze(interpolatedIR(:,2,:));

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects with NumeratorSource set to Input port. Setting
NumeratorSource to Input port enables you to modify the filter coefficients while
streaming.

leftFilter = dsp.FIRFilter('NumeratorSource', 'Input port');
rightFilter = dsp.FIRFilter('NumeratorSource', 'Input port');

2-251

2 Functions in Audio Toolbox

fileReader

= dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
deviceWriter =

audioDeviceWriter('SampleRate', fileReader.SampleRate);
In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the audio data through the left and right HRIR filters.

3 Concatenate the left and right channels and write the audio to your output device. If
you have a stereo output hardware, such as headphones, you can hear the source
shifting position over time.

4 Modify the desired source position in 2-second intervals by updating the filter
coefficients.

durationPerPosition = 2;
samplesPerPosition durationPerPosition*fileReader.SampleRate;
samplesPerPosition samplesPerPosition - rem(samplesPerPosition, fileReader.SamplesPerl

sourcePositionIndex = 1;
samplesRead = 0;
while ~isDone(fileReader)
audioIn = fileReader();
samplesRead = samplesRead + fileReader.SamplesPerFrame;

leftChannel = leftFilter(audioIn,leftIR(sourcePositionIndex,:));
rightChannel = rightFilter(audioIn,rightIR(sourcePositionIndex,:));

deviceWriter([leftChannel, rightChannel]);
if mod(samplesRead,samplesPerPosition) ==
sourcePositionIndex = sourcePositionIndex + 1;
end
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Input Arguments

HRTF — HRTF values measured at source positions
N-by-2-by-M array

2-252

interpolateHRTF

HRTF values measured at the source positions, specified as a N-by-2-by-M array.

* N -- Number of known HRTF pairs
* M -- Number of samples in each known HRTF

Known

- Source Positions
A

p

Measured HRTF Pairs

l

If you specify HRTF with real numbers, the function assumes that the input represents an
impulse response, and M corresponds to the length of the impulse response. If you specify
HRTF with complex numbers, the function assumes that the input represents a transfer
function, and M corresponds to the number of bins in the frequency response. The output
of the interpolateHRTF function has the same complexity and interpretation as the
input.

Data Types: single | double
Complex Number Support: Yes

sourcePositions — Source positions corresponding to measured HRTF values
N-by-2 matrix

2-253

2 Functions in Audio Toolbox

2-254

Source positions corresponding to measured HRTF values, specified as a N-by-2 matrix. N
is the number of known HRTF pairs. The two columns correspond to the azimuth and
elevation of the source in degrees, respectively.

Azimuth must be in the range [-180,360]. You can use the —180 to 180 convention or the
0 to 360 convention.

Elevation must be in the range [—90,180]. You can use the —90 to 90 convention or the 0
to 180 convention.

Data Types: single | double

desiredSourcePositions — Desired source positions for HRTF interpolation
P-by-2 matrix

Desired source position for HRTF interpolation, specified as a P-by-2 matrix. P is the
number of desired source positions. The columns correspond to the desired azimuth and
elevation of the source in degrees, respectively.

Azimuth must be in the range [-180,360]. You can use the —180 to 180 convention or the
0 to 360 convention.

Elevation must be in the range [—90,180]. You can use the —90 to 90 convention or the 0
to 180 convention.

interpolateHRTF

Desired Source Position

e ¥
ol ‘) Elevation

~/,‘-’-'tzimuth

\

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'Algorithm', 'VBAP'

Algorithm — Interpolation algorithm
‘Bilinear' (default) | 'VBAP'

Interpolation algorithm, specified as "Bilinear" or "VBAP".

* Bilinear -- 3-D bilinear interpolation, as specified by [1].

2-255

2 Functions in Audio Toolbox

2-256

* VBAP -- Vector base amplitude panning interpolation, as specified by [2].

Data Types: char | string

Output Arguments

interpolatedHRTF — Interpolated HRTF
P-by-2-by-M

Interpolated HRTE returned as a P-by-2-by-M array.

* P -- Number of desired source positions, specified by the number of rows in the
desiredSourcePositions input argument.

* M -- Number of samples in each known HRTF, specified by the number of pages in the
HRTF input argument.

Known

-+ Source Positions
Q4

p

Des{ (¢ h

Source Position

interpolateHRTF

interpolatedHRTF has the same complexity and interpretation as the input. If you
specify the input, HRTF, with real numbers, the function assumes that the input
represents an impulse response. If you specify the input with complex numbers, the
function assumes that the input represents a transfer function.

Data Types: single | double
Complex Number Support: Yes
References

[1] EP. Freeland, L.W.P. Biscainho and P.S.R. Diniz, "Interpolation of Head-Related
Transfer Functions (HRTFS): A multi-source approach." 2004 12th European
Signal Processing Conference. Vienna, 2004, pp. 1761-1764.

[2] Pulkki, Ville. "Virtual Sound Source Positing Using Vector Base Amplitude Panning.
Journal of Audio Engineering Society. Vol. 45. Issue 6, pp. 456-466.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.FIRFilter |dsp.FrequencyDomainFIRFilter

External Websites
Acoustics Research Institute HRTF Database

Introduced in R2018b

2-257

https://www.kfs.oeaw.ac.at/index.php?view=article&id=608&lang=en

2 Functions in Audio Toolbox

2-258

impzest

Estimate impulse response of audio system

Syntax

ir = impzest(excitation, response)
ir impzest(excitation, response,Name,Value)

Description

ir = impzest(excitation, response) returns an estimate of the impulse response
(IR) based on the excitation and response.

ir = impzest(excitation, response,Name,Value) specifies options using one or
more Name, Value pair arguments.

Examples

Estimate Impulse Response Using Sweep Tone Excitation
Create a sweep tone excitation signal by using the sweeptone function.
excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

impzest

Excitation
D.ﬁ T T T T T T

04r

0.2

047

0 2 4 6 8 10 12 14
x 104

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to
model a real-world recording (system response).

[B,A] butter(10,[.1 .71);

rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2-259

2 Functions in Audio Toolbox

System Response

0 2 4 6 8 10 12 14
x 104

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Truncate the estimate to 100 points. Use impz to determine the
true impulse response of the system. Plot the true impulse response and the estimated
impulse response for comparison.

irEstimate
irEstimate

impzest(excitation,nrec);
irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate,
0:100,irTrue, 'ro')

legend('True impulse response', 'Estimated impulse response')

2-260

impzest

D_ 5 T T T T T T T T T
True impulse response
0.4 F 1 Estimated impulse response |
0.3r1 b
]
0.27r1 b

0 10 20 30 40 50 G0 70 80 90 100

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using
the known impulse response.

[irKnown, fs] = audioread('ChurchImpulseResponse-16-44pl-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal
must be longer than the impulse response. Note that the length of the MLS excitation is
extended to the next power of two minus one.

2-261

2 Functions in Audio Toolbox

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

Excitation

0.6 T T

%107

Replicate the excitation signal four times to measure the average of three measurements.
The recording of the first MLS sequence does include all the impulse response
information, so impzest discards it as a warmup run. Pad the excitation signal with zeros
to account for the filter latency.

numRuns = 4;
excrep repmat(excitation,numRuns,1);
excrep [excrep;zeros(numel(irKnown)+1,1)1];

2-262

impzest

Pass the excitation signal through the known filter and then add noise to model a real-
word recording (system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);

rec = rec + 0.1*randn(size(rec));
rec = rec(numel(irKnown)+2:end,:);
plot(rec)

title('System Response')

System Response

15 T

0 2 4 6 8 10 12
%107

In a real-world scenario, the MLS sequence is played back in the system under test while
recording. The recording would be cut so that it begins at the moment the MLS sequence
is picked-up and truncated to last the duration of the repeated sequence.

2-263

2 Functions in Audio Toolbox

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Plot the known impulse response and the simulation of the
estimated impulse response for comparison.

irEstimate = impzest(excitation,rec);
samples = l:numel(irKnown);
plot(samples,irEstimate(samples), 'bo"',

samples,irKnown(samples), 'm.")

legend('Known impulse response','Simulation of estimated impulse response')

2-264

impzest

0.8 T T T T

2 Known impulse response
Simulation of estimated impulse response

0.6 8

25
% 10°

Input Arguments

excitation — Single period of excitation signal input to audio system
column vector

Single period of excitation signal input to audio system, specified as a column vector.

You can generate excitation signals by using mls (maximum length sequence) or
sweeptone (exponential sine sweep).

Data Types: single | double

2-265

2 Functions in Audio Toolbox

2-266

response — Recorded signal output from audio system
column vector | matrix

Recorded signal output from audio system, specified as a column vector or matrix. If
specified as a matrix, each column of the matrix is treated as an independent channel.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'WarmupRuns',2

WarmupRuns — Number of warmup runs in response
nonnegative integer

Number of warmup runs in the response, specified as a nonnegative integer. The
impzest function estimates the impulse response after discarding the specified number
of warmup runs from the response.

The default number of warmup runs depends on whether the excitation signal was
generated using the mls or sweeptone function:

e mls-—-1
* sweeptone--0

Data Types: single | double

Output Arguments

ir — Estimate of the impulse response of an audio system
column vector | matrix

Estimate of the impulse response of an audio system, returned as a column vector or
matrix. The size of ir is L-by-C, where:

impzest

* L -- MLS length or duration of sweep tone silence
* C -- Number of columns (channels) in the response signal

Data Types: single | double

References

[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."
Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of
Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246-262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time
Partitioned Convolution on a DSP Board." Application of Signal Processing to
Audio and Acoustics, 2003 IEEE Workshop, pp. 71-74. IEEE, 2003.

See Also

Impulse Response Measurer | mls | sweeptone

Introduced in R2018b

2-267

2 Functions in Audio Toolbox

2-268

mididevinfo

MIDI device information

Syntax

mididevinfo
deviceInformation = mididevinfo

Description

mididevinfo displays a table containing information about the MIDI devices attached to
the system.

deviceInformation = mididevinfo returns a structure, deviceInformation,
containing information about the MIDI devices attached to the system.

Note Before starting MATLAB, connect your MIDI device to your computer and turn on
the device. For connection instructions, see the instructions for your MIDI device. If you
start MATLAB before connecting your device, MATLAB might not recognize your device
when you connect it. To correct the problem, restart MATLAB with the device already
connected.

Examples

Display MIDI Device Connections

Call mididevinfo to display a table containing information about the MIDI devices
attached to your system.

mididevinfo

MIDI devices available:
ID Direction Interface Name

mididevinfo

output MMSystem 'Microsoft MIDI Mapper'

input MMSystem "BCF2000'

input MMSystem 'MIDIIN2 (BCF2000)'

output MMSystem 'Microsoft GS Wavetable Synth'
output MMSystem 'BCF2000"

output MMSystem 'MIDIOUT2 (BCF2000)'

output MMSystem 'MIDIOUT3 (BCF2000)'

Ok, WNREO

Return Structure of MIDI Device Connections

Call mididevinfo with an output argument to return a structure containing MIDI device
information.

deviceInformation mididevinfo

deviceInformation = struct with fields:
input: [0x0 struct]
output: [1x2 struct]

The deviceInformation structure has two fields: input and output. Both input and
output contain arrays of structures. Each member has three fields: Name, Interface,
and ID. Get the device information for the output Microsoft GS Wavetable Synth device.

deviceInformation.output(2)

ans = struct with fields:
Name: 'Microsoft GS Wavetable Synth'
Interface: 'MMSystem'
ID: 1

Output Arguments

deviceInformation — Description of available devices
struct

Description of available devices, returned as nested structures. The outer structure has
two fields: input and output. The input and output values are arrays of structures, and
each member has three fields: Name, Interface, and ID.

2-269

2 Functions in Audio Toolbox

2-270

Data Types: struct

See Also

mididevice | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

https://www.midi.org/

pitch

pitch

Estimate fundamental frequency of audio signal

Syntax
f0 = pitch(audioln, fs)
f0 = pitch(audioln, fs,Name,Value)

[fO,loc] = pitch()

Description

f0 = pitch(audioln, fs) returns estimates of the fundamental frequency over time
for the audio input, audioIn, with sample rate fs. Columns of the input are treated as
individual channels.

f0 = pitch(audioln, fs,Name,Value) specifies options using one or more
Name, Value pair arguments.

[f0,loc] = pitch() returns the locations, loc, associated with fundamental
frequency estimates.

Examples

Estimate Pitch of Speech Signal Using Default Parameters

Read in an audio file and then call the pitch function with default parameters.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[f0,idx] = pitch(audioln,fs);

Plot the audio signal and pitch contour.

subplot(2,1,1)
plot(audioIn)

2-271

2 Functions in Audio Toolbox

ylabel('Amplitude")

subplot(2,1,2)
plot(idx, fo)
ylabel('Pitch (Hz)"')
xLlabel('Sample Number')

Amplitude

Lk
=]
=
T
i

Pitch {Hz)
[
2

T

______ —\—\—1i- q_,_-.gr_. ” I

D i i i i
0 1 2 2 4 3 & 7

Sample Number win®

The pitch function estimates the fundamental frequency of the input signal at locations
determined by the WindowLength and OverlapLength name-value pairs.

2-272

pitch

Estimate Pitch of Musical Signal Using Nondefault Parameters

Load an audio file of the introduction to Fiir Elise and the sample rate of the audio. Call
the pitch function using the pitch estimate filter (PEF), a search range from 50 Hz to
800 Hz, a window length of 80 ms, and an overlap of 50 ms. Plot the results and listen to
the song to verify the fundamental frequency estimates returned by the pitch function.

load FurElise.mat song fs

[f0,loc] = pitch(song,fs,
'Method', 'PEF',
'Range', [50 800],
'WindowlLength', round(fs*0.08),
'OverlapLength', round(fs*0.05));

t = loc/fs;
plot(t,f0)
ylabel('Pitch

(Hz)")
xlabel('Time (s

Hz)
)")

2-273

2 Functions in Audio Toolbox

TDD T T T T T T T
600 _ |

500 [_| j 'r_] I_,f_ 1

-

=2

=
T
I

Pitch (Hz)
L
L

200 7

1001 T

sound(song, fs)

Compare Pitch Detection Algorithms

The different methods of estimating pitch provide trade-offs in terms of noise robustness,
accuracy, optimal lag, and computation expense. In this example, you compare the
performance of different pitch detection algorithms in terms of gross pitch error (GPE)
and computation time under different noise conditions.

2-274

pitch

Prepare Test Signals

Load an audio file and determine the number of samples it has. Also load the true pitch
corresponding to the audio file. The true pitch was determined as an average of several
third-party algorithms on the clean speech file.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
numSamples = size(audioln,l);
load TruePitch.mat truePitch

Create test signals by adding noise to the audio signal at given SNRs. The mixSNR
function is a convenience function local to this example, which takes a signal, noise, and
requested SNR and returns a noisy signal at the request SNR.

testSignals = zeros(numSamples,4);
turbine = audioread('Turbine-16-44pl-mono-22secs.wav');

testSignals(:,1) = mixSNR(audioIn,turbine,?20);
testSignals(:,2) mixSNR(audioIn,turbine,0);

whiteNoiseMaker = dsp.ColoredNoise('Color', 'white', 'SamplesPerFrame',size(audioIn,l));
testSignals(:,3) mixSNR(audioIn,whiteNoiseMaker(),20);
testSignals(:,4) mixSNR(audioIn,whiteNoiseMaker(),0);

Save the noise conditions and algorithm names as cell arrays for labeling and indexing.

noiseConditions = {'Turbine (20 dB)', 'Turbine (0 dB)', 'WhiteNoise (20 dB)', 'WhiteNoise
algorithms = {'NCF','PEF','CEP','LHS"','SRH'};

Run Pitch Detection Algorithms

Preallocate arrays to hold pitch decisions for each algorithm and noise condition pair, and
the timing information. In a loop, call the pitch function on each combination of
algorithm and noise condition. Each algorithm has an optimal window length associated
with it. In this example, for simplicity, you use the default window length for all
algorithms. Use a 3-element median filter to smooth the pitch decisions.

fO0 = zeros(numel(truePitch),numel(algorithms),bnumel(noiseConditions));
algorithmTimer = zeros(numel(noiseConditions),numel(algorithms));

for k 1:numel(noiseConditions)
X testSignals(:,k);
for i = l:numel(algorithms)
tic

2-275

2 Functions in Audio Toolbox

2-276

fOtemp = pitch(x,fs,
'Range', [50 300],
'Method',algorithms{i},
'MedianFilterLength',3);
algorithmTimer(k,i) = toc;
fO(1l:max(numel(fOtemp),numel(truePitch)),i,k) = fOtemp;
end
end

Compare Gross Pitch Error

Gross pitch error (GPE) is a popular metric when comparing pitch detection algorithms.
GPE is defined as the proportion of pitch decisions for which the relative error is higher
than a given threshold, traditionally 20% in speech studies. Calculate the GPE and print it
to the Command Window.

idxToCompare = ~isnan(truePitch);
truePitch = truePitch(idxToCompare);
f0 = fO(idxToCompare,:,:);

p = 0.20;
GPE = mean(abs(fO(l:numel(truePitch),:,:) - truePitch) > truePitch.*p).*100;
for ik = 1:numel(noiseConditions)
fprintf('\nGPE (p = %0.2f), Noise = %s.\n',p,noiseConditions{ik});
for i = 1:size(GPE,?2)
fprintf('- %s : %0.1f %%\n',algorithms{i},GPE(1,1i,1ik))
end

Turbine (20 dB).

)
o
m
—
o
1l
©
N
o)
=
=
o
P
[7)]
1)
Il

Turbine (0 dB).

)
o
m
—
°
1l
©
N
o)
=
=
o
P
(7]
1)
Il

5
12
- CEP : 1
- LHS : 9.
- SRH : 46.8 %

GPE (p = 0.20), Noise = WhiteNoise (20 dB).

pitch

- NCF :
- PEF :
- CEP :
- LHS :
- SRH :

.9
0
2.9
.9
6

NOROO
o® o°
o°

o® o°

GPE (p = 0.20), Noise = WhiteNoise (0 dB).
- NCF : 0.4

- PEF : 0
- CEP :
- LHS :
- SRH :

o® o°

3.6
.3
.7

o°

HFNNOO

o® o°

Calculate the average time it takes to process one second of data for each of the
algorithms and print the results.

aT = sum(algorithmTimer)./((numSamples/fs)*numel(noiseConditions));
for ik = 1l:numel(algorithms)
fprintf('- %s : %0.3f (s)\n',algorithms{ik},aT(ik))

end

- NCF : 0.054 (s)
- PEF : 0.284 (s)
- CEP : 0.065 (s)
- LHS : 0.179 (s)
- SRH : 0.205 (s)

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using
the pitch function. Then use the voiceActivityDetector to remove irrelevant pitch
information that does not correspond to the speaker.

Read in the audio file and associated sample rate.
[audio,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop).
Specify that the pitch function searches for the fundamental frequency over the range
50-150 Hz and postprocesses the results with a median filter. Plot the results.

windowLength = round(0.05*fs);
overlapLength = round(0.04*fs);

2-277

2 Functions in Audio Toolbox

hopLength = windowLength - overlapLength;

[f0,loc] = pitch(audio,fs,
'WindowLength',windowlLength,
'OverlapLength',overlapLength,
'Range', [50 150], ..
'MedianFilterLength',3);

plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)")
xlabel('Time (s)')

150 T T T T

-

140

130

120

=5
=5
=

100

Fundamental Frequency (Hz)

2-278

14

16

pitch

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped
frames. Also create a voiceActivityDetector System object™ to determine if the
frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the
probability that the frame contains speech. To mimic the decision spacing in time of the
pitch function, the first frame read from the buffer has no overlap.

n=1;
probabilityVector = zeros(numel(loc),1l);
while buffer.NumUnreadSamples >= hopLength
if n==
X = read(buffer,windowLength);
else
X
end
probabilityVector(n) = VAD(x);
n = n+l;

read (buffer,windowLength, overlapLength);

end

Use the probability vector determined by the voiceActivityDetector to plot a pitch
contour for the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;

fO(~validIdx) = nan;

plot(loc/fs,f0)

ylabel('Fundamental Frequency (Hz)")
xlabel('Time (s)')

2-279

2 Functions in Audio Toolbox

150
140 | | -

130 | | ' .

1201 1

100 | |

Fundamental Frequency (Hz)

70 r |_

60 7

ED i i i i i i i

Input Arguments

audioIn — Audio input signal
vector | matrix

Audio input signal, specified as a vector or matrix. The columns of the matrix are treated
as individual audio channels.

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

2-280

pitch

Sample rate of the input signal in Hz, specified as a positive scalar.

The sample rate must be greater than or equal to twice the upper bound of the search
range. Specify the search range using the Range name-value pair.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: pitch(audiolIn, fs, 'Range', [50,150], 'Method"', 'PEF"')

Range — Search range for pitch estimates
[50,400] (default) | two-element row vector with increasing positive integer values

Search range for pitch estimates, specified as the comma-separated pair consisting of
'Range' and a two-element row vector with increasing positive integer values. The
function searches for a best estimate of the fundamental frequency within the upper and
lower band edges specified by the vector, according to the algorithm specified by Method.
The range is inclusive and units are in Hz.

Valid values for the search range depend on the sample rate, fs, and on the values of
WindowLength and Method:

Method Minimum Range Maximum Range
'NCF' fs/WindowlLength < Range(2) < fs/2
Range (1)
'PEF' 10 < Range(1) Range(2) <
min (4000, fs/2)
'CEP! fs/ Range(2) < fs/2

(2”nextpow2 (2*WindowLe
ngth-1)) < Range(1)

'LHS' 1 < Range(1) Range(2) < fs/5 - 1
'SRH' 1 < Range(1) Range(2) < fs/5 - 1

Data Types: single | double

2-281

2 Functions in Audio Toolbox

WindowLength — Number of samples in analysis window
round (fs*0.052) (default) | integer

Number of samples in the analysis window, specified as the comma-separated pair
consisting of 'WindowLength' and an integer in the range [1, min(size(audioIn,1),
192000)]. Typical analysis windows are in the range 20-100 ms. The default window
length is 52 ms.

Data Types: single | double

OverlapLength — Number of samples of overlap between adjacent analysis
windows
round(fs*0.042) (default) | integer

Number of samples of overlap between adjacent analysis windows, specified as the
comma-separated pair consisting of 'OverlapLength' and an integer in the range (-
inf,WindowLength). A negative overlap length indicates non-overlapping analysis
windows.

Data Types: single | double

Method — Method used to estimate pitch
'NCF' (default) | '"PEF' | 'CEP' | '"LHS"' | 'SRH'

Method used to estimate pitch, specified as the comma-separated pair consisting of
'Method' and 'NCF', 'PEF','CEP', 'LHS', or 'SRH'. The different methods of
calculating pitch provide trade-offs in terms of noise robustness, accuracy, and
computation expense. The algorithms used to calculate pitch are based on the following
papers:

* 'NCF' -- Normalized Correlation Function [1]

* 'PEF' -- Pitch Estimation Filter [2]. The function does not use the amplitude
compression described by the paper.

* 'CEP' -- Cepstrum Pitch Determination [3]
* 'LHS' -- Log-Harmonic Summation [4]
e 'SRH' -- Summation of Residual Harmonics [5]

Data Types: char | string
MedianFilterLength — Median filter length used to smooth pitch estimates over

time
1 (default) | positive integer

2-282

pitch

Median filter length used to smooth pitch estimates over time, specified as the comma-
separated pair consisting of 'MedianFilterLength' and a positive integer. The default,
1, corresponds to no median filtering. Median filtering is a postprocessing technique used
to remove outliers while estimating pitch. The function uses movmedian after estimating
the pitch using the specified Method.

Data Types: single | double

Output Arguments

f0 — Estimated fundamental frequency (Hz)
scalar | vector | matrix

Estimated fundamental frequency, in Hz, returned as a scalar, vector, or matrix. The
number of rows returned depends on the values of the WindowlLength and
OverlapLength name-value pairs, and on the input signal size. The number of columns
(channels) returned depends on the number of columns of the input signal size.

Data Types: single | double

loc — Locations associated with fundamental frequency estimations
scalar | vector | matrix

Locations associated with fundamental frequency estimations, returned as a scalar,
vector, or matrix the same size as f0.

Fundamental frequency is estimated locally over a region of WindowLength samples. The
values of loc correspond to the most recent sample (largest sample number) used to
estimate fundamental frequency.

Data Types: single | double

Algorithms

The pitch function segments the audio input according to the WindowLength and
OverlapLength arguments. The fundamental frequency is estimated for each frame. The
locations output, Loc contains the most recent samples (largest sample numbers) of the
corresponding frame.

2-283

2 Functions in Audio Toolbox

windowLength

+-»
L

Frame 2 Frame 4

Frame 1 Frame 3

—
OverlapLength k

Frame Overlap
overlapLength > 0

For a description of the algorithms used to estimate the fundamental frequency, consult
the corresponding references:
* 'NCF' -- Normalized Correlation Function [1]

* 'PEF' -- Pitch Estimation Filter [2]. The function does not use the amplitude
compression described by the paper.

* 'CEP' -- Cepstrum Pitch Determination [3]

'"LHS' -- Log-Harmonic Summation [4]

'SRH' -- Summation of Residual Harmonics [5]

References

[1] Atal, B.S. "Automatic Speaker Recognition Based on Pitch Contours." The Journal of
the Acoustical Society of America. Vol. 52, No. 6B, 1972, pp. 1687-1697.

[2] Gonzalez, Sira, and Mike Brookes. "A Pitch Estimation Filter robust to high levels of
noise (PEFAC)." 19th European Signal Processing Conference. Barcelona, 2011,
pp. 451-455.

[3] Noll, Michael A. "Cepstrum Pitch Determination." The Journal of the Acoustical
Society of America. Vol. 31, No. 2, 1967, pp. 293-3009.

[4] Hermes, Dik]J. "Measurement of Pitch by Subharmonic Summation." The Journal of the
Acoustical Society of America. Vol. 83, No. 1, 1988, pp. 257-264.

2-284

pitch

[5] Drugman, Thomas, and Abeer Alwan. "Joint Robust Voicing Detection and Pitch
Estimation Based on Residual Harmonics." Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH. 2011,
pp. 1973-1976.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
mfcc

System Objects
cepstralFeatureExtractor | voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

2-285

2 Functions in Audio Toolbox

2-286

mfcc

Extract mfcc, log energy, delta, and delta-delta of audio signal

Syntax

coeffs mfcc(audioIn, fs)
coeffs mfcc(__ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = mfcc()

Description

coeffs = mfcc(audioln, fs) returns the mel frequency cepstral coefficients (MFCCs)
for the audio input, sampled at a frequency of fs Hz.

coeffs = mfcc(__ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values..

Example: [coeffs] = mfcc(audioln,fs, 'LogEnergy', 'Replace') returns mel
frequency cepstral coefficients for the audio input signal sampled at fs Hz. The first
coefficient in the coeffs vector is replaced with the log energy value.

[coeffs,delta,deltaDelta,loc] = mfcc() returns the delta, delta-delta, and

location of samples corresponding to each window of data.

Examples

Compute Mel Frequency Cepstral Coefficients

Compute the mel frequency cepstral coefficients of a speech signal using the mfcc
function. The function returns delta, the change in coefficients, and deltaDelta, the
change in delta values. The log energy value that the function computes can prepend the
coefficients vector or replace the first element of the coefficients vector. This is done
based on whether you set the 'LogEnergy' argument to 'Append' or 'Replace’.

mfcc

Read an audio signal from the 'Counting-16-44pl-mono-15secs.wav' file using the
audioread function. The mfcc function processes the entire speech data in a batch. The
default DeltaWindowLength is 2. Therefore, delta is computed as the difference
between the current coefficients and the previous coefficients. deltaDelta is computed
as the difference between the current and the previous delta values. Based on the number
of input rows, the window length, and the hop length, mfcc partitions the speech into
1551 frames and computes the cepstral features for each frame. Each row in the coeffs
matrix corresponds to the log-energy value followed by the 13 mel-frequency cepstral
coefficients for the corresponding frame of the speech file. The function also computes
loc, the location of the last sample in each input frame.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn, fs);

Input Arguments

audioIn — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If specified as a matrix, mfcc treats the
columns of the matrix as individual audio channels.

Data Types: single | double

fs — Sample rate in Hz
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: [coeffs,delta,deltaDelta, loc] =
mfcc(audioIn, fs, 'LogEnergy', 'Replace', 'DeltaWindowlLength',5) returns

2-287

2 Functions in Audio Toolbox

2-288

mel frequency cepstral coefficients for the audio input signal sampled at fs Hz. The first
coefficient in the coeffs vector is replaced with the log energy value. A set of 5 cepstral
coefficients is used to compute the delta and the delta-delta values.

WindowLength — Number of samples in analysis window
round(fs*0.03) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as an
integer greater than or equal to 2. If unspecified, the 'WindowLength' value defaults to
round(fs*0.03). Window length must be in the range [2,size(audioIn,1)].

Data Types: single | double

OverlapLength — Number of overlapping samples between adjacent windows
round(fs*0.02) (default) | integer

Number of samples which overlap or underlap between the adjacent windows. An
'OverlapLength' value that is:

* Positive indicates an overlap between adjacent windows.
* Negative indicates an underlap between adjacent windows.
* Zero indicates no overlap between adjacent windows.

The 'OverlaplLength' value must be set to less than the 'WindowLength'.

Here is how the overlapping frames look:

windowlLength

-
v

L 3

Frame 2 Frame 4

Frame 1 Frame 3

—_—
overlapLength »\

Frame Overlap
overlapLength = 0

Here is how the underlapping frames look:

mfcc

windowLength

-

Frame 1 Frame 2 Frame 3

b — —— e — — e — ——— e e — —— — —] - . EEE

-»

-

OverlapLength k

Frame Underlap
OverlapLength < 0
Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as an integer in the
range [2 v], where v is the number of valid passbands.

The number of valid passbands is defined as sum(BandEdges <= floor(fs/2))-2.A
passband is valid if its edges fall below fs/2, where fs is the sample rate of the input
audio signal, specified as the second argument, fs.

The mfcc function uses a filter bank of 40 half-overlapped triangles, with band edges

defined by the table:

Filters Passband Edges (Hz)
Filter 1 [133 267]

Filter 2 [200 333]

Filter 3 [267 400]

Filter 4 [333 467]

Filter 5 [400 533]

Filter 6 [467 600]

Filter 7 [533 667]

Filter 8 [600 733]

2-289

2 Functions in Audio Toolbox

Filters Passband Edges (Hz)
Filter 9 [667 800]
Filter 10 [733 867]
Filter 11 [800 933]
Filter 12 [867 999]
Filter 13 [933 1071]
Filter 14 [999 1147]
Filter 15 [1071 1229]
Filter 16 [1147 1316]
Filter 17 [1229 1410]
Filter 18 [1316 1510]
Filter 19 [1410 1618]
Filter 20 [1510 1733]
Filter 21 [1618 1856]
Filter 22 [1733 1988]
Filter 23 [1856 2130]
Filter 24 [1988 2281]
Filter 25 [2130 2444]
Filter 26 [2281 2618]
Filter 27 [2444 2804]
Filter 28 [2618 3004]
Filter 29 [2804 3217]
Filter 30 [3004 3446]
Filter 31 [3217 3692]
Filter 32 [3446 3954]
Filter 33 [3692 4236]
Filter 34 [3954 4537]
Filter 35 [4236 4860]
Filter 36 [4537 5206]

2-290

mfcc

Filters Passband Edges (Hz)
Filter 37 [4860 5577
Filter 38 [5206 5973]
Filter 39 [5577 6399]
Filter 40 [5973 6854]

The passband edges in the table are rounded for readability. For exact edges, see the
default settings of the cepstralFeatureExtractor System object.

Data Types: single | double

FFTLength — Number of bins for calculating DFT
WindowLength (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples. The FFT length
value must be greater than or equal to the 'WindowLength' value. The
'WindowLength' argument specifies the number of rows in the windowed input. By
default, the FFT length value is set to the 'WindowLength'.

Data Types: single | double

DeltaWindowLength — Number of coefficients for calculating delta and delta-
delta

2 (default) | odd integer greater than 2

Number of coefficients used to calculate the delta and the delta-delta values, specified as
2 or an odd integer greater than 2.

If 'DeltaWindowlLength' is set to 2, the delta is given by the difference between the

current coefficients and the previous coefficients, delta = currCocffs — prevCoeffs

If 'DeltaWindowlLength' is set to an odd integer greater than 2, the delta values are
given by the following equation:

i k- coeffs(k,:)

delta ==X

2-291

2 Functions in Audio Toolbox

2-292

The function uses a least-squares approximation of the local slope over a region around
the current time sample. The delta cepstral values are computed by fitting the cepstral
coefficients of neighboring frames (M frames before the current frame and M frames after
the current frame) by a straight line. For details, see [1].

Data Types: single | double

LogEnergy — Specify how the log energy is shown
"Append’ (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

* 'Append' -- The function prepends the log energy to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs.

* 'Replace' -- The function replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

* 'Ignore' -- The object does not calculate or return the log energy.

Data Types: char | string

Output Arguments

coeffs — Mel frequency cepstral coefficients (MFCCs)
matrix | array

Mel frequency cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N
array, where,

* L -- Number of frames the audio signal is partitioned into. The 'WindowLength' and
'OverlaplLength' properties control this dimension.

mfcc

windowLength

L 3
L

Frame 2 Frame 4

Frame 1 Frame 3

o — — — — — — — — — —

—
OverlapLength k

Frame Overlap
overlapLength = 0

The number of audio frames, L, is computed using the following equation:
L =floor ((nRows — winLen)/hopLen) +1

* nRows -- Number of input rows.

* winLen -- Number of samples in the analysis window, specified by the
'WindowLength' argument. If not specified, the window length is
round (fs*0.03).

* hopLen -- Number of samples in the current frame before the start of the next

frame. Hop length is given by hopLen =WindowLength—OverlapLength

* M —- Number of coefficients returned per frame. This value is determined by the
NumCoeffs and LogEnergy properties.

When the LogEnergy property is set to:
* 'Append' -- The object prepends the log energy value to the coefficients vector.
The length of the coefficients vector is 1 + NumCoeffs.

* 'Replace’' -- The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

* 'Ignore' -- The object does not calculate or return the log energy.
* N -- Number of input channels (columns).

Data Types: single | double

2-293

2 Functions in Audio Toolbox

delta — Change in coefficients
matrix | array

Change in coefficients from one frame of data to another, returned as an L-by-M matrix or
an L-by-M-by-N array. The delta array is the same size and data type as the coeffs
array.

If 'DeltaWindowlLength' is set to 2, the delta is given by the difference between the

current coefficients and the previous coefficients, delta = currCocffs — prevCocffs

Consider the example below which computes the mel frequency coefficients for the entire
speech file. The 'DeltaWindowlLength' value is 2. The mfcc function partitions the
speech into 1551 frames. Each row in the coeffs matrix corresponds to the log energy
value followed by the 13 mel frequency cepstral coefficients for the corresponding
segment of the speech file.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioln, fs);

The first row of the delta matrix, delta(1, :) is zeros. The second row, delta(2, :)
equals the difference in coefficients for the current frame, coeffs (2, :) and the
previous frame, coeffs(1,:).

If 'DeltaWindowlLength' is set to an odd integer greater than 2, the delta values are
given by the following equation:

i k- coeffs(k,:)

delta ==X

M
2K
k=M

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].

Data Types: single | double

deltaDelta — Change in delta values
matrix | array

2-294

mfcc

Change in delta values from one frame of data to another, returned as an L-by-M matrix
or an L-by-M-by-N array. The deltaDelta array is the same size and data type as the
coeffs and delta arrays.

If 'DeltaWindowlLength' is set to 2, the deltaDelta is given by the difference
between the current delta values and the previous delta values,

deltaDelta = currdelta — prevdelta

Consider the example below which computes the mel frequency coefficients for the entire
speech file. The 'DeltaWindowlLength' value is 2.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioln, fs);

The first row of the deltaDelta matrix, deltaDelta(1, :) is zeros. The second row,
deltaDelta(2, :) equals the difference in delta values for the current frame,
delta(2, :) and the previous frame, delta(1, :).

If 'DeltaWindowlLength' is set to an odd integer greater than 2, the deltaDelta
values are given by the following equation:

M
Y, k-delia(k,:)
deltaDelta = ="

M

2K

k=—M

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].

Data Types: single | double

loc — Location of the last sample in each input frame
vector

Location of last sample in each input frame, returned as a vector. The loc vector is given
by the [t;, t,, ts,...,t,] elements in the following diagram, where n corresponds to the
number of frames the input is partitioned into, and ¢, is the last sample of the last frame.

2-295

2 Functions in Audio Toolbox

windowLength

+-»
L

Frame 2 Frame 4

Frame 1 Frame 3

—
OverlapLength k

Frame Overlap
overlapLength > 0

Data Types: single | double

Algorithms

The mfcc function splits the entire data into overlapping segments. The length of each
rolloff segment is determined by the 'WindowlLength' argument. The length of overlap
between segments is determined by the 'OverlapLength' argument.

windowLength

™
v

L 3

Frame 2 Frame 4

Frame 1 Frame 3

—_—
overlapLength k

Frame Overlap
overlapLength > 0

The function computes the mel frequency cepstral coefficients, log energy values, cepstral
delta, and the cepstral delta-delta values for each segment as per the algorithm described
in cepstralFeatureExtractor System object.

2-296

mfcc

References

[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital
Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

See Also

Functions
pitch

System Objects
cepstralFeatureExtractor | voiceActivityDetector

Blocks
Cepstral Feature Extractor | Voice Activity Detector

Introduced in R2018a

2-297

2 Functions in Audio Toolbox

2-298

asiosettings

Open settings panel for ASIO driver

Syntax

asiosettings
asiosettings(deviceName)

Description

asiosettings opens the settings panel for the ASIO driver associated with the default
audio device.

asiosettings(deviceName) opens the settings panel for the ASIO driver associated
with the audio device, deviceName.

Examples

Open ASIO Settings Panel for Specified Device

Create an audio I/O object, audioPlayerRecorder. Call asiosettings with the device
associated with audioPlayerRecorder as the argument.

playRec = audioPlayerRecorder;
asiosettings(playRec.Device)

Open ASIO Settings Panel for Default Device

Call the asiosettings function with no arguments.

asiosettings()

asiosettings

Optimize Latency

To optimize latency when using an ASIO driver, set the buffer size of the ASIO driver to
the buffer size of your audio I/O object. In this example, assume the input to your audio
device writer is 64 samples per frame. This example requires a Windows machine and an
ASIO driver.

Create an audioDeviceWriter System object™. Open the ASIO settings panel for an
ASIO-compatible device associated with your device writer.

deviceWriter = audioDeviceWriter('Driver', 'ASIO0');
asiosettings(deviceWriter.Device)

On the machine in this example, the following dialog opens:

=~ Yamaha Steinberg USB Driver

Steinberg UR44 ASIO About

Device : Steinberg UR44 ™
Buffer Size : 1024 Samples ~
Input Latency . 26.083 msec

Output Latency : 30.063 msec

oK Cancel

2-299

2 Functions in Audio Toolbox

The dialog that opens is specific to your ASIO driver. Set the ASIO buffer size to the
desired size, 64.

= Yamaha Steinberg USB Driver

Steinberg UR44 ASIO About
Device : Steinberg UR44 v
Buffer Size : 64 Samples v
Input Latency : 4.083 msec
Output Latency : 5.063 msec
oK Cancel

The latency is now minimized for the frame size of 64 samples. If you want to measure the
reduction in latency specific to your system, follow the steps in the Measure Audio
Latency example.

Input Arguments

deviceName — Name of ASIO-compatible device
default ASIO-compatible device (default) | character vector | string

2-300

asiosettings

Name of ASIO-compatible device, specified as a character vector or string. If
deviceName is not specified, the default ASIO-compatible device is used.

To view a list of valid ASIO device names on your machine, use getAudioDevices on an
audioPlayerRecorder, audioDeviceReader('Driver', 'ASIO'), or
audioDeviceWriter('Driver', 'ASIO') object.

Data Types: char | string

Tips

* asiosettings is compatible only on Windows machines with ASIO drivers. ASIO
drivers do not come pre-installed with Windows.

* asiosettings returns an error if called with a locked audio device. For example:
aDR = audioDeviceReader('Driver', "ASI0"');
abR();
asiosettings(aDR.Device)

Error using audio asiosettings
PortAudio Error: Device unavailable

Error in asiosettings (line 77)
audio asiosettings(ID);

See Also

System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2017b

2-301

2 Functions in Audio Toolbox

2-302

getAudioDevices

List available audio devices

Syntax

devices = getAudioDevices(obj)

Description

devices = getAudioDevices(obj) returns a list of audio devices that are available
and compatible with your audio I/O object, obj.

Examples

List Audio Devices Available to audioDeviceReader

Create an audioDeviceReader System object™, and then call getAudioDevices on
your object.

deviceReader = audioDeviceReader;
devices = getAudioDevices(deviceReader)

List Audio Devices Available to audioDeviceWriter

Create an audioDeviceWriter System object™, and then call getAudioDevices on
your object.

deviceWriter = audioDeviceWriter;
devices = getAudioDevices(deviceWriter)

getAudioDevices

List Audio Devices Available to audioPlayerRecorder

Create an audioPlayerRecorder System object™, and then call getAudioDevices on
your object.

playRec
devices

audioPlayerRecorder;
getAudioDevices(playRec)

Input Arguments

obj — Audio 1/0 object
object of audioDeviceReader | object of audioDeviceWriter | object of
audioPlayerRecorder

Audio I/O object, specified as an object of audioDeviceReader, audioDeviceWriter,
or audioPlayerRecorder.

Data Types: object

Output Arguments

devices — List of available and compatible devices
array

List of available and compatible devices.

For audioDeviceReader and audioDeviceWriter, the list of audio devices depends
on the specified Driver property of your object.

For audioPlayerRecorder, the audio devices listed support full-duplex mode and have
a platform-appropriate driver:

* Windows® -- ASIO™
¢ Mac -- CoreAudio
o Linux® —- ALSA

Data Types: cell

2-303

2 Functions in Audio Toolbox

Tips

Devices are persistent within a MATLAB session. To recognize new devices within your
MATLAB session, clear device data within your session using the command line. As an
example, if you have created an audioDeviceReader System object, you can type the
following into your command line:

>> deviceReader = audioDeviceReader;
>> devices = getAudioDevices(deviceReader)

devices =
1x1 cell array
{'No audio input device detected'}

This displays a list of the devices connected to your computer. To add more devices,
connect the additional devices to your computer. Then, type the following into your
command line:

>> clear deviceReader dspAudioDevicelInfo

>> deviceReader = audioDeviceReader;
>> devices = getAudioDevices(deviceReader)

devices =
1x3 cell array
{'Default'} {'Primary Sound Capture Driver'} {'Headset Microphone (Plantro..':

This displays an updated list of the devices connected to your computer, including the
devices you added during your current session. This process also works with the
audioDeviceWriter and audioPlayerRecorder System objects.

See Also

System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

2-304

getAudioDevices

Introduced in R2016a

2-305

2 Functions in Audio Toolbox

2-306

audioPlugininterface

Specify audio plugin interface

Syntax

PluginInterface = audioPluginInterface

PluginInterface = audioPluginInterface(pluginParameters)
PluginInterface = audioPluginInterface(Name,Value)
Description

PluginInterface = audioPluginInterface returns an object, PluginInterface,
that specifies the interface of an audio plugin in a digital audio workstation (DAW)
environment. It also specifies interface attributes, such as naming for identification.

PluginInterface = audioPluginInterface(pluginParameters) specifies audio
plugin parameters, which are user-facing variables associated with audio plugin
properties. See audioPluginParameter for more details.

PluginInterface = audioPluginInterface(Name,Value) specifies
audioPluginInterface properties using one or more Name, Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin

methods
function out = process(~,in)
out = in;
end
end

end

audioPlugininterface

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
properties (Constant)
PluginInterface = audioPluginInterface;

end
methods
function out = process(~,in)
out = in;
end
end

end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin

properties

Gain = 1;
end
properties (Constant)

PluginInterface = audioPluginInterface;
end
methods

function out = process(plugin,in)

out = in*plugin.Gain;

2-307

2 Functions in Audio Toolbox

2-308

end
end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain’.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
properties (Constant)
PluginInterface = audioPluginInterface(...
audioPluginParameter('Gain'));
end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW)
environment, the plugin property, Gain, synchronizes with a user-facing plugin
parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name,
vendor version, unique identification, number of input channels, and number of output
channels.

classdef monoGain < audioPlugin
properties

Gain = 1;

end
properties (Constant)

PluginInterface = audioPluginInterface(...
audioPluginParameter('Gain'), ...
'"PluginName', 'Simple Gain',...
'VendorName', 'Cool Company', ...

audioPlugininterface

'VendorVersion','1.0.0',...
'Uniqueld', '1lalz', ...
"InputChannels',1,...
'"OutputChannels',1l);

end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end

end

Input Arguments

pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a
digital audio workstation (DAW) environment, they synchronize plugin class properties
with user-facing parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'PluginName', 'cool effect', 'VendorVersion', '1.0.2"' specifies the
name of the generated audio plugin as 'cool effect' and the vendor version as
'1.0.2".

PluginName — Name of generated plugin
name of plugin class (default) | character vector

Name of your generated plugin, as seen by a host audio application, specified as a
comma-separated pair consisting of 'PluginName' and a string of up to 127 characters.
If 'PluginName' is not specified, the generated plugin is given the name of the audio
plugin class it is generated from.

2-309

2 Functions in Audio Toolbox

2-310

VendorName — Vendor name of the plugin creator
"' (default) | character vector

Vendor name of the plugin creator, specified as the comma-separated pair 'VendorName'
and a character vector of up to 127 characters.

VendorVersion — Vendor version
'1.0.0" (default) | dot-separated character vector

Vendor version used to track plugin releases, specified as a comma-separated pair
consisting of 'VendorVersion' and a dot-separated string of 1-3 integers in the range 0
to 9.

Example: '1"'
Example: '1.4"
Example: '1.3.5"'

Uniqueld — Unique identifier of plugin
'MWap' (default) | four-element character vector

Unique identifier for your plugin, specified as a comma-separated pair consisting of
‘UniquelID’' and a four-character string, used for recognition in certain digital audio
workstation (DAW) environments.

InputChannels — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of ' InputChannels'
and an integer or vector of integers. The input channels are the number of input data
arguments and associated channels (columns) passed to the processing function of your
audio plugin.

Example: 'InputChannels', 3 calls the processing function with one data argument
containing 3 channels.

Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the
third contains 1 channel, and the fourth contains 5 channels.

Note This property is not applicable for audio source plugins, and must be omitted.

audioPlugininterface

OutputChannels — Output channels
2 (default) | integer | vector of integers

Output channels, specified a comma-separated pair consisting of 'OutputChannels'
and an integer or vector of integers. The output channels are the number of input data
arguments and associated channels (columns) passed from the processing function of
your audio plugin.

Example: 'OutputChannels', 3 specifies the processing function to output one data
argument containing 3 channels.

Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4
data arguments. The first argument contains 2 channels, the second contains 4 channels,
the third contains 1 channel, and the fourth contains 5 channels.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Classes
audioPlugin | audioPluginSource

Functions
audioPluginParameter | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-311

2 Functions in Audio Toolbox

audioPluginParameter

Specify audio plugin parameters

Syntax

pluginParameter = audioPluginParameter(propertyName)
pluginParameter = audioPluginParameter(propertyName,Name,Value)
Description

pluginParameter = audioPluginParameter(propertyName) returns an object,
pluginParameter, that associates an audio plugin parameter to the audio plugin
property specified by propertyName. Use the plugin parameter object,
pluginParameter, as an argument to an audioPluginInterface function in your
plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench in
the MATLAB environment, plugin parameters are tunable, user-facing variables with
defined ranges mapped to controls. When you modify a parameter value using a control,
the associated plugin property is also modified. If the audio processing algorithm of the
plugin depends on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the environment
in which a plugin is run, see “Implementation of Audio Plugin Parameters” on page 2-328.

pluginParameter = audioPluginParameter(propertyName,Name,Value)
specifies audioPluginParameter properties using one or more Name, Value pair
arguments.

Examples

2-312

audioPluginParameter

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
properties (Constant)
PluginInterface = audioPluginInterface;
end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain"'.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
properties (Constant)
PluginInterface = audioPluginInterface(...
audioPluginParameter('Gain'));
end

2-313

2 Functions in Audio Toolbox

2-314

methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain',
'Label' as 'linear’', and 'Mapping' as{'lin',0,20}.

classdef myAudioPlugin < audioPlugin
properties
Gain = 1;
end
properties (Constant)
PluginInterface = audioPluginInterface(...
audioPluginParameter('Gain', ...

'DisplayName', 'Awesome Gain',...
"Label', 'linear',...
'"Mapping', {'lin',0,20}));

end

methods

function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the linear gain of an audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin
properties
Gain = 1;
end

audioPluginParameter

properties (Constant)

PluginInterface = audioPluginInterface(

audioPluginParameter('Gain"',
'Mapping', {'int',0,3}));
end
methods
function out = process(plugin,in)
out = in*plugin.Gain;
end
end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test

Bench.

audioTestBench(pluginWithIntegerMapping)

2-315

2 Functions in Audio Toolbox

4 = | =] ==
OP® ED MM EEH @ w
"~
(@ Object Under Test |pluginiithintegertapping —'j] Input |Audio File Reader w @
Run As ‘MATLAE code s Output | Audio Device Wiriter ~ @
Gain 4 r| 1
Ready Samples undetrun =0 | Samples processed =0 o

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the gain of an audio signal in dB.

classdef pluginWithPowerMapping < audioPlugin
properties
Gain = 0;

2-316

audioPluginParameter

end
properties (Constant)

PluginInterface = audioPluginInterface(

audioPluginParameter('Gain"',
'Label', 'dB', ...
'Mapping', {'pow', 1/3, -140,
end
methods
function out = process(plugin,in)
dBGain = 10"~ (plugin.Gain/20);
out = in*dBGain;
end
end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test

Bench.

audioTestBench(pluginWithPowerMapping)

2-317

2 Functions in Audio Toolbox

4] = | = | =
QPr® 92E0| | MNM&E @ “
Ll
(@ Object Under Test |pluginiithPowerhapping —'j] Input |Audio File Reader w @
Run As |MATLAE code ~ Output | Audio Device Writer W @
Gain (dB) « »| 0
Ready Samples undetrun =0 | Samples processed =0 o

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to tune the center frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin
properties
EQ

2-318

audioPluginParameter

end

CenterFrequency = 1000;

properties (Constant)

end

PluginInterface = audioPluginInterface(
audioPluginParameter('CenterFrequency"’,
'Mapping', {'log',100,10000}));

methods

end
end

function plugin = pluginWithLogMapping
plugin.EQ = multibandParametricEQ('NumEQBands',1,
'PeakGains', 20,
'Frequencies',plugin.CenterFrequency);
end
function out = process(plugin,in)
out = plugin.EQ(in);
end
function set.CenterFrequency(plugin,val)
plugin.CenterFrequency = val;
plugin.EQ.Frequencies = val;
end
function reset(plugin)
plugin.EQ.SampleRate = getSampleRate(plugin);
end

To run the plugin, save the class definition to a local folder and then call the Audio Test

Bench.

audioTestBench(pluginWithLogMapping)

2-319

2 Functions in Audio Toolbox

= = |[= | =)
L IEEEIEIEENE >
Ll
(@ Object Under Test | pluginiithLogMapping —'j] Input |Audio File Reader w @
Run As ‘MATLAE code s Output | Audio Device Wiriter ~ @
CenterFrequency 4 P| 1000
Ready Samples undetrun =0 | Samples processed =0 o

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to block or pass through the audio signal by tuning the PassThrough
parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin
properties

2-320

audioPluginParameter

end

PassThrough = true;
end
properties (Constant)
PluginInterface = audioPluginInterface(
audioPluginParameter('PassThrough', ...
'Mapping', {'enum', 'Block signal', 'Pass through'}));

end
methods
function out = process(plugin,in)
if plugin.PassThrough
out = in;
else
out = zeros(size(in));
end
end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogicalEnumMapping)

2-321

2 Functions in Audio Toolbox

= [@ =
QPr® ES| N &E @ >
@ Object Under Test pluginwithLogicalEnumMapping ||| Input |Audia File Reader v| &)

Run As ‘MATLAE code s Output | Audio Device Wiriter ~ @

PassThrough

Ready

Samples undetrun =0 | Samples processed =0 o

‘enum' for Enumeration Class Parameter Mapping
The following class definitions comprise a simple example of enumeration parameter

mapping for properties defined by an enumeration class. You can specify the operating
mode of the plugin created from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin

2-322

audioPluginParameter

properties

Mode = OperatingMode.boost;
end
properties (Constant)

PluginInterface = audioPluginInterface(...

audioPluginParameter('Mode', ...

'Mapping',{'enum','+6 dB','-6 dB'

end
methods
function out = process(plugin,in)
switch (plugin.Mode)
case OperatingMode.boost
out = in * 2;
case OperatingMode.cut
out = in / 2;
case OperatingMode.mute
out = zeros(size(in));
case OperatingMode.noise

out = rand(size(in)) - 0.5;

otherwise
out = in;
end
end
end
end

Enumeration Class Definition

classdef OperatingMode < int8
enumeration
boost (0)
cut (1)
mute (2)
noise (3)
end
end

,'silence', 'white noise'}));

To run the plugin, save the plugin and enumeration class definition files to a local folder.

Then call the Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

2-323

2 Functions in Audio Toolbox

=

ON

Ready

PEO||NE %= e

(@ Object Under Test |pluginithEnumMapping

Run As |MATLAE code

Mode |+5 4B

Input |Audio File Reader w @

Output Audio Device Writer ~ @

Samples undetrun =0 | Samples processed =0 o

2-324

Input Arguments

propertyName — Name of audio plugin property

character vector

Name of the audio plugin property that you want to associate with a parameter, specified
as a character vector. Enter the property name exactly as it is defined in the property

section of your audio plugin class.

audioPluginParameter

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'DisplayName’, 'Gain', 'Label’, 'dB' specifies the display name of your
parameter as 'Gain' and the display label for parameter value units as 'dB".

DisplayName — Display name of parameter
associated property name (default) | character vector

Display name of your parameter, specified as a comma-separated pair consisting of
'DisplayName' and a character vector. If 'DisplayName' is not specified, the name of
the associated property is used.

The display name of your parameter is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

Label — Display label for parameter value units
"' (default) | character vector

Display label for parameter value units, specified as a comma-separated pair consisting of
'Label' and a character vector.

The display label for parameter value units is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

The 'Label' name-value pair is ignored for nonnumeric parameters.

Mapping — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair
consisting of 'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated
parameter range.

The first element of the cell array is a character vector specifying the kind of mapping.
The valid values are 'lin', 'log"', 'pow', 'int"', and 'enum'. The subsequent

2-325

2 Functions in Audio Toolbox

2-326

elements of the cell array depend on the kind of mapping. The valid mappings depend on

the property data type.
Property Data Type Valid Mappings Default
double 'lin', 'log’', 'pow’', {'lin', 0, 1}
"int'
logical "enum' {'enum', 'off"', 'on'}
enumeration class ‘enum' enumeration names
Mappi |Description Example
ng
'lin' |Specifies a linear relationship with {'lin', 0, 24} specifies a linear
given minimum and maximum values. |relationship with a minimum of 0 and
maximum of 24.
(property value) = min + (max — min)
X (parameter value) Simple Example: “Specify Parameter
Information” on page 2-314
'log' |[Specifies a logarithmic relationship {'log', 1, 22050} specifies a
with given minimum and maximum logarithmic relationship with a
values, where the control position minimum of 1 and a maximum of
maps to the logarithm of the property [22050.
value. The minimum value must be
greater than 0. Simple Example: “Logarithmic
Parameter Mapping” on page 2-318
(property value) = min
% (max/min)(parametervalue)
'pow' |Specifies a power law relationship with [{'pow"', 1/3, -140, 12} specifies a

given exponent, minimum, and
maximum values. The property value is
related to the control position raised to
the exponent:

(property value) = min + (max — min)
x (parameter value)®*®

power law relationship with an
exponent of 1/3, a minimum of -140,
and a maximum of 12.

Simple Example: “Power Parameter
Mapping” on page 2-316

audioPluginParameter

Mappi |Description Example
ng
"int' |[Quantizes the control position and {'int"', 0, 3} specifies a linear,
maps it to the range of consecutive quantized relationship with a minimum
integers with given minimum and of 0 and maximum of 3. The property
maximum values. value is mapped as an integer in the
range 0 to 3.
property value) = floor
0.5 + min + (max — min) Simple Example: “Integer Parameter
X (parameter value)) Mapping” on page 2-314
"enum' |Optionally provides character vectors |{'enum', 'Block
(logical |(for display on the plugin dialog box. signal', 'Passthrough'} specifies
) the character vector 'Block signal'
if the parameter value is false and
'Passthrough' if the parameter
value is true.
Simple Example: “Enumeration for
Logical Properties Parameter
Mapping” on page 2-320
"enum' |Optionally provides character vectors |[{'enum', '+6 dB', '-6 dB',
(enume |for the members of the enumeration 'silence', 'white noise'}
ration |[class. specifies the character vectors '+6
class) dB', '-6 dB', 'silence’, and

'white noise'.

Simple Example: “‘enum' for
Enumeration Class Parameter
Mapping” on page 2-322

For nontrivial examples of audio plugin parameter mapping, see “Audio Plugin Example

Gallery”.

2-327

2 Functions in Audio Toolbox

Definitions

Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio
workstation (DAW) environments.

MATLAB Environment. Use Audio Test Bench to interact with plugin parameters in
the MATLAB environment.

MATLAB
Plugin S ==
Constant Properties| CLLIET LT = -
Interface Sk is e Sl
Runfs LT3 Cutput Ao Do Br-

1TLA coce - Dot v
Parameters Puiod (uctnas) | o - slider for property data type double
- -

e Check box for property data type logical

- - Drop-down menu for property data type
enumeration class

Display name of
parameter

min max

Display label for Parameter value
parameter value units

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to a
DAW environment. The DAW environment determines the exact layout of plugin
parameters as seen by the plugin user.

2-328

audioPluginParameter

DAW
Generated Plugin B
Constant Properties] MIDI Controller
Interface . _.. 1o 4e de 1o 1% max
S B E R FI H D min
. > -
Properties |g ™ Parameters |¢—
I Plugin Dialog Box
| I, 5

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Classes
audioPlugin | audioPluginSource

Functions
audioPluginInterface | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-329

2 Functions in Audio Toolbox

2-330

configureMIDI

Configure MIDI connections between audio object and MIDI controller

Syntax

configureMIDI (audioObject)

configureMIDI (audioObject, propertyName)

configureMIDI (audioObject, propertyName, controlNumber)
configureMIDI(audioObject, propertyName, controlNumber, 'DeviceName’',
deviceNameValue)

Description

configureMIDI (audioObject) opens a MIDI configuration user interface (UI). Use the
UI to synchronize parameters of the plugin, audioObject, to MIDI controls on your
default MIDI device. You can also generate MATLAB code corresponding to the MIDI
configuration developed using the configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or
host operating system. Use midiid to get the device name corresponding to your MIDI
device.

configureMIDI (audioObject, propertyName) makes the property, propertyName,
respond to any control on the default MIDI device.

configureMIDI (audioObject, propertyName, controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI (audioObject,propertyName, controlNumber, 'DeviceName',
deviceNameValue) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceNameValue.

configureMIDI

Examples

Synchronize Plugin Parameters to MIDI Controls

1

3

Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI (parametricEQPlugin);
In the Ul, select a property to synchronize with your default MIDI device.

CenterFrequency -

On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

2-331

2 Functions in Audio Toolbox

2-332

CenterFrequency -

control 1002 on 'nanoKONTROLZ

™

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI

controls.

To disconnect the property and control currently displayed on your configureMIDI
UL, click Reset Control at any time.

Click OK.

The specified MIDI controls and properties and now synchronized.

Generate MATLAB Code from configureMIDI Ul

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UL You can embed the MATLAB code in your simulation so that you do
not need to reopen the UI to restore your chosen MIDI connections.

1

Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI (parametricEQPlugin);

In the Ul, select a property to synchronize with your default MIDI device.

configureMIDI

CenterFrequency -

st [Recet Conta |

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

CenterFrequency

control 1002 on 'nanoKONTROLZ

4 Select the Generate MATLAB Code check box.

2-333

2 Functions in Audio Toolbox

CenterFrequency

control 1002 on 'nanoKONTROLZ

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that
you developed.

2-334

configureMIDI

| Untitled18 = R
EDITOR AR e o= = @
dub - hEl:lll EQ]Find Files Insert (=1 fx E - D @ E]Run Section \[_LP
| o) Compare = cCfGoTo w Comment %, &2]
Mew Open Save . Breakpoints Run Run and @Advance Run and
- - - HPnnt - sFmd - Indent B wi [f¢ - - Advance Time
FILE NAVIGATE EDT BREAKPOINTS RUN
1 function setupMIDIControls (obj) D
2
32 %Generated on 03-Nov-2015 17:55:03
4
5 $Use this code to synchronize your cobject with the MIDI devigce.
& configureMIDI (cbj, 'CenterFrequencyl',1002, 'DeviceName', "nanoKONTROL2Z ') ;
7T
setupMIDIControls Ln 7 Col 1

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI (parametricEQPlugin, 'CenterFrequencyl');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device
Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizer.

2-335

2 Functions in Audio Toolbox

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a MIDI control to synchronize with your property.
[controlNumber,device] = midiid

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

controlNumber =

1003

device =
nanoKONTROL2

Use configureMIDI to synchronize your chosen MIDI control, specified by
controlNumber, with a property.

configureMIDI (parametricEQPlugin, 'CenterFrequencyl', controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device
Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
Use midiid to identify a specific MIDI control on a specific MIDI device.
[controlNumber,device] = midiid

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

controlNumber =

1003

2-336

configureMIDI

device =
nanoKONTROL2

Use configureMIDI to synchronize a property with your chosen MIDI control, specified
by controlNumber, on your chosen MIDI device, specified by device.

configureMIDI (parametricEQPlugin, 'CenterFrequencyl’,controlNumber, 'DeviceName',device)

Input Arguments

audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

propertyName — Name of object property
character vector

Name of the object property, specified as a character vector. Enter the property name
exactly as it is defined in the property section of your audio plugin or Audio Toolbox
System object.

controlNumber — MIDI device control number
integer values

MIDI device control number, specified as an integer. The value is assigned to the control
by the device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device nhame
character vector

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a character vector. If you do not specify a MIDI device name, the default
MIDI device is used.

Limitations

For MIDI connections established by configureMIDI, moving a MIDI control sends a
callback to update the associated property values. To synchronize your MIDI device in an

2-337

2 Functions in Audio Toolbox

2-338

audio stream loop, you might need to use the drawnow command for the callback to
process immediately. For efficiency, use the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio object, uncomment the d rawnow
limitrate command from this code:

fileReader = dsp.AudioFileReader(...

'Filename', 'RockDrums-44pl-stereo-1lsecs.mp3');
deviceWriter = audioDeviceWriter;
dRC = compressor;

configureMIDI(compressor, 'Threshold"');

while ~isDone(fileReader)
input = fileReader();
output = dRC(input);
deviceWriter(output);
% drawnow limitrate;
end

release(fileReader);
release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as
dsp.SpectrumAnalyzer, dsp.TimeScope, or dsp.ArrayPlot, the drawnow command
is not required.

See Also

Classes
audioPlugin | audioPluginSource

Functions
disconnectMIDI | getMIDIConnections | midicallback | midicontrols | midiid
| midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

configureMIDI

Introduced in R2016a

2-339

2 Functions in Audio Toolbox

designParamEQ

Design parametric equalizer

Syntax

[B,A]
[B,A]

designParamEQ(N,gain, centerFreq, bandwidth)
designParamEQ(N,gain, centerFreq,bandwidth,mode)

Description

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order
parametric equalizer with specified gain, center frequency, and bandwidth. B and A are
matrices of numerator and denominator coefficients, with columns corresponding to
cascaded second-order section (SOS) filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies
whether the parametric equalizer is implemented with second-order sections or fourth-
order sections (FOS).

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized
bandwidth of the bands of your parametric equalizer.

N =1[2,4];

gain = [6,-4];

centerFreq = [0.25,0.75];

bandwidth = [0.12,0.10];

Generate the filter coefficients using the specified parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

2-340

designParamEQ

Create a filter matrix compatible with fvtool.
S0S = [B',[ones(sum(N)/2,1),A'1];
Visualize your filter design.

fvtool(S0S)

Magnitude Response (dB)
T T T T T T

Magnitude (dB)

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9
Normalized Frequency (=« rad/sample)

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

2-341

2 Functions in Audio Toolbox

fileReader = dsp.AudioFileReader (...
'RockGuitar-16-44pl-stereo-72secs.wav', ...
'SamplesPerFrame', frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500
audio = fileReader();
deviceWriter(audio);
count = count+1;

end

reset(fileReader);

Design a SOS parametric equalizer.

N = [4,4];

gain = [-25,35];

centerFreq = [0.01,0.5];

bandwidth = [0.35,0.5];

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design.
S0S = [B',[ones(4,1),A'1];
fvtool(SOS, ...

'Fs',fileReader.SampleRate, ...
'FrequencyScale', 'Log');

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...
'SOSMatrixSource', 'Input port',...
'ScaleValuesInputPort', false);

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

2-342

designParamEQ

scope = dsp.SpectrumAnalyzer(...
'SampleRate',sampleRate, ...
'PlotAsTwoSidedSpectrum', false,...
'FrequencyScale', 'Log', ...
'FrequencyResolutionMethod', 'WindowLength', ...
'WindowlLength', frameSize,...
'Title', 'Original and Equalized Signals',...
'ShowLegend', true, ...
‘ChannelNames',{'0Original Signal', 'Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500
originalSignal = fileReader();
equalizedSignal = myFilter(originalSignal,B,A);
scope([originalSignal(:,1),equalizedSignal(:,1)]1);
deviceWriter(equalizedSignal);
count = count+l;

end

release(scope)

release(deviceWriter)
release(fileReader)

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamkQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader (...
'RockGuitar-16-44pl-stereo-72secs.wav', ...
'SamplesPerFrame', frameSize);

sampleRate = fileReader.SampleRate;

2-343

2 Functions in Audio Toolbox

deviceWriter = audioDeviceWriter(...
'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
x = fileReader();
deviceWriter(x);
count = count+l;
end
reset(fileReader);

Design FOS parametric equalizer coefficients.

N = [2,4];

gain = [5,10];

centerFreq = [0.025,0.65];
bandwidth = [0.025,0.35];
mode = 'fos';

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode);
Construct FOS IIR filters.

sectionl
section?

)

1)'1)
, '‘Denominator',[1,A(:,2)

dsp.IIRFilter('Numerator',B(:,1)"', 'Denominator',[1,A(:,
')

dsp.IIRFilter('Numerator',B(:,2)

']
']

Visualize the frequency response of your parametric equalizer.

[H1,w] = freqz(sectionl,8192,sampleRate);
H2 = freqz(section2,8192,sampleRate);

H = 20.*logl0(abs(H1.*H2));

semilogx(w,H);

title('Magnitude Response (dB)')
xlabel('Frequency (Hz)"')
ylabel('Magnitude (dB)"')

grid on

2-344

designParamEQ

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
'SampleRate',sampleRate, ...
'PlotAsTwoSidedSpectrum', false,...
'FrequencyScale', 'Log’', ...
'FrequencyResolutionMethod', 'WindowLength', ...
'WindowLength', frameSize, ...
'Title','Original and Equalized Signals',...
'ShowLegend', true, ...
'ChannelNames', {'Original Signal', 'Equalized Signal'});

Play the filtered audio signal, and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500
x = fileReader();
y = sectionl(x);
z = section2(y);

scope([x(:,1),z(:,1)1);
deviceWriter(z);

count = count + 1;
end

release(fileReader)
release(deviceWriter)
release(scope)

Input Arguments

N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFregq.
Elements of the vector must be even integers.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

2-345

2 Functions in Audio Toolbox

2-346

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be real-valued.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

Normalized center frequency of equalizer bands, specified as a scalar or row vector of
real values in the range 0 to 1, where 1 corresponds to the Nyquist frequency (1 rad/
sample). If centerFreq is specified as a row vector, separate equalizers are designed for
each element of centerFreq.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as
centerFreq. Elements of the vector are specified as real values in the range 0 to 1,
where 1 corresponds to the Nyquist frequency (i rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to - Inf (notch filter),
normalized bandwidth is measured at the 3 dB attenuation point: 10 x log1(0.5).

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor
as

\/z(octave bandwidth)

Q=

2(octave bandwidth) _ 1 :

Then convert to bandwidth

centerFreq

Q

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

bandwidth =

designParamEQ

mode — Design mode
'sos' (default) | ' fos'

Design mode, specified as 'sos' or 'fos'.

* 'sos' -- Implements your equalizer as cascaded second-order filters.

+ 'fos' -- Implements your equalizer as cascaded fourth-order filters. Because fourth-
order sections do not require the computation of roots, they are generally more
computationally efficient.

Data Types: char | string

Output Arguments

B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. Each column of B corresponds to the
numerator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. Each column of A corresponds to the
denominator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2-347

2 Functions in Audio Toolbox

2-348

See Also

Functions
designShelvingEQ | designVarSlopeFilter

System Objects
dsp.BiquadFilter | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

designShelvingEQ

designShelvingEQ

Design shelving equalizer

Syntax

[B,A]
[B,A]

designShelvingEQ(gain,slope,Fc)
designShelvingEQ(gain,slope, Fc,type)

Description

[B,A] = designShelvingEQ(gain,slope, Fc) designs a low-shelf equalizer with the
specified gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded
second-order section (SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope, Fc,type) specifies the design type as a
low-shelving or high-shelving equalizer.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;
gain = 5;
slopel = 0.5;
slope2 = 0.75;
slope3 = 1;

2-349

2 Functions in Audio Toolbox

Fc = 1000/ (Fs/2);

Design the filter coefficients using the specified parameters.

[B1,Al] = designShelvingEQ(gain,slopel,Fc);
[B2,A2] = designShelvingEQ(gain,slope2,Fc);
[B3,A3] = designShelvingEQ(gain,slope3,Fc);

Create filter matrices compatible with fvtool.

S0S1 = [B1',[1,A1']];
S0s2 = [B2',[1,A2']];
S0S3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(...
dsp.BiquadFilter('SOSMatrix',S0S1),.
dsp.BiquadFilter('SOSMatrix',S0S2),...
dsp.BiquadFilter('SOSMatrix',S0S3),
'Fs',Fs, ...
'FrequencyScale', 'Log');

legend('slope = 0.1",...
'slope 0.5',...
'slope 1')

Filter Audio Using Low-Shelf Equalizer
Design a low-shelf equalizer, and then use it to filter an audio signal.

Construct audio file reader and audio device writer objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

frameSize = 256;
fileReader = dsp.AudioFileReader (...

'RockGuitar-16-44pl-stereo-72secs.wav', ...
'SamplesPerFrame', frameSize);

2-350

designShelvingEQ

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;

while count < 2500
audio = step(fileReader);
play(deviceWriter,audio);
count = count+1;

end

reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;
slope = 3;
Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);
Visualize your equalizer design.

S0S = [B',[1,A']];

fvtool(dsp.BiquadFilter('SOSMatrix"',S0S),...

'Fs',fileReader.SampleRate, ...
'"FrequencyScale', 'Log');

Construct a biquad filter object.
myFilter = dsp.BiquadFilter(...

'SOSMatrixSource', 'Input port',...
'ScaleValuesInputPort', false);

Construct a spectrum analyzer object to visualize the original audio signal and the audio

signal passed through your low-shelf equalizer.

scope = dsp.SpectrumAnalyzer(...
'SampleRate',sampleRate, ...
'PlotAsTwoSidedSpectrum', false,...

2-351

2 Functions in Audio Toolbox

2-352

'FrequencyScale', 'Log', ...

'FrequencyResolutionMethod', 'WindowLength', ...
'WindowlLength', frameSize,...

'Title', 'Original and Equalized Signal',...
'ShowLegend', true, ...

‘ChannelNames',{'0Original Signal', 'Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

setup(scope,ones(frameSize,2));

count = 0;

while count < 2500
originalSignal = fileReader();
equalizedSignal = myFilter(originalSignal,B,A);
scope([originalSignal(:,1),equalizedSignal(:,1)1);
deviceWriter(equalizedSignal);
count = count+1;

end

release(fileReader)

release(scope)
release(deviceWriter)

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;
gainl = -6;
gain2 = 6;

gain3 = 12;
slope = 0.8;

Fc = 18000/ (Fs/2);

Design the filter coefficients using the specified parameters.

designShelvingEQ

[B1,Al] = designShelvingEQ(gainl,slope,Fc,'hi');
[B2,A2] = designShelvingEQ(gain2,slope,Fc, 'hi');
[B3,A3] = designShelvingEQ(gain3,slope,Fc, 'hi');

Create filter matrices compatible with fvtool.

S0s1 = [B1',[1,A1']];
S0s2 = [B2',[1,A2']];
S0S3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(dsp.BiquadFilter('SOSMatrix',S0S1),...
dsp.BiquadFilter('SOSMatrix',S0S2),...
dsp.BiquadFilter('SOSMatrix',S0S3),...
'"Fs',Fs);

legend('gain = -6 dB', ...
'gain = 6 dB', ...
'gain = 12 dB', ...
'"Location', 'NorthWest"')

2-353

2 Functions in Audio Toolbox

Magnitude Response (dB)

12 r '

gain = -6 dB
10F gain = 6 dB 4
gain =12 dB

=2}
T
1
1

B
\\‘

Magnitude (dB)
o8]
™,

=]
T
|
|
|
|
I|
1

R
T
r
i

L

0 5 10 15 20
Frequency (kHz)

Input Arguments

gain — Peak gain (dB)
real scalar in the range -12 to 12

Peak gain in dB, specified as a real scalar in the range -12 to 12.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

slope — Slope coefficient
real scalar in the range 0 to 5

2-354

designShelvingEQ

Slope coefficient, specified as a real scalar in the range 0 to 5.

Data Types: single | double | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (1 rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2 dB.

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

* 'lo'-- Low shelving equalizer
* 'hi'-- High shelving equalizer

Data Types: char | string

Output Arguments

B — Numerator filter coefficients
three-element column vector

Numerator filter coefficients of the designed second-order IIR filter, retuned as a three-
element column vector.

A — Denominator filter coefficients
two-element column vector.

Denominator filter coefficients of the designed second-order IIR filter, returned as a two-
element column vector. A does not include the leading unity coefficient.

2-355

2 Functions in Audio Toolbox

2-356

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
designParamkEQ | designVarSlopeFilter

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

designVarSlopeFilter

designVarSlopeFilter

Design variable slope lowpass or highpass IIR filter

Syntax

[B,A]
[B,A]

designVarSlopeFilter(slope,Fc)
designVarSlopeFilter(slope, Fc,type)

Description

[B,A] = designVarSlopeFilter(slope, Fc) designs a lowpass filter with the
specified slope and cutoff frequency. B and A are matrices of numerator and denominator
coefficients, with columns corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a
lowpass or highpass filter.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass
IIR filters. The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fcl = 10000/ (Fs/2);
Fc2 = 16000/ (Fs/2);

Design the filter coefficients using the specified parameters.

2-357

2 Functions in Audio Toolbox

[B1,Al]
[B2,A2]

designVarSlopeFilter(slope,Fcl);
designVarSlopeFilter(slope,Fc2);

Create filter matrices compatible with fvtool.

S0S1
S0S2

[B1',[ones(4,1),A1']1]1;
[B2',[ones(4,1),A2'11;

Visualize your filter design.

fvtool(S0S1,S0S2, 'Fs',Fs);

legend('Fc = 10000 Hz',...
'Fc = 16000 Hz',...
'Location', 'SouthWest');

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter.
Use your lowpass filter to process an audio signal.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(
'RockGuitar-16-44pl-stereo-72secs.wav',
'SamplesPerFrame', frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(
'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500

2-358

designVarSlopeFilter

audio = fileReader();
deviceWriter(audio);
count = count+1;

end

reset(fileReader);

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized frequency cutoff.
[B,A] = designVarSlopeFilter(12,0.15);
Visualize your filter design.

S0S = [B',[ones(4,1),A'1];
fvtool(S0S,
'Fs',sampleRate);

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(
'SOSMatrixSource', 'Input port',
'ScaleValuesInputPort', false);

Construct a spectrum analyzer System object to visualize the original audio signal and the
audio signal passed through your lowpass filter.

scope = dsp.SpectrumAnalyzer (
'SampleRate',sampleRate,
'PlotAsTwoSidedSpectrum', false,
'FrequencyScale', 'Log', ...
'FrequencyResolutionMethod', 'WindowLength',
'WindowlLength', frameSize, .
'Title', 'Original and Equalized Signal',
'ShowLegend', true,
'ChannelNames', {'0Original Signal', 'Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));

count = 0;
while count < 2500
originalSignal = fileReader();
filteredSignal = myFilter(originalSignal,B,A);

scope([originalSignal(:,1),filteredSignal(:,1)]);
deviceWriter(filteredSignal);
count = count+1;

end

2-359

2 Functions in Audio Toolbox

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff
frequency.

Fs = 48e3;

slopel = 18;
slope2 = 36;

Fc = 4000/ (Fs/2);

Design the filter coefficients using the specified parameters.

[B1,Al]
[B2,A2]

designVarSlopeFilter(slopel,Fc, 'hi');
designVarSlopeFilter(slope2,Fc, 'hi');

Create filter matrices compatible with fvtool.

S0S1
S0S2

[B1',[ones(4,1),A1']];
[B2',[ones(4,1),A2']1];

Visualize your filter design.

fvtool(S0S1,S50S2, ...
'"Fs',Fs, ...
'FrequencyScale', 'Log');
legend('slope = 18 dB/octave', ...
'slope = 36 dB/octave', ...
'Location', 'NorthWest"')

2-360

designVarSlopeFilter

Magnitude (dB)

Magnitude Response (dB)

10 F i
slope = 18 dBloctave
0r slope = 36 dBloctave ==

60 | / f .

-B0 F ¢ -

90 / -
102 107 10° 107
Frequency (kHz)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by
the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System

object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

2-361

2 Functions in Audio Toolbox

2-362

fileReader = dsp.AudioFileReader(
fullfile(matlabroot, 'examples', 'audio', 'Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
audioIn = fileReader();
deviceWriter(audioIn);

end

release(deviceWriter)

release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'"Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');

biquadFilter = dsp.BiquadFilter(
'SOSMatrixSource', 'Input port',
'ScaleValuesInputPort', false);

crossFilt = crossoverFilter(
"NumCrossovers',1l, ...
'CrossoverFrequencies', 250,
'CrossoverSlopes',48);

dRCompressor = compressor (
'"Threshold', -35,
'Ratio’, 10, ...
'KneeWidth', 20,
"AttackTime',le-4,
'ReleaseTime',3e-1,
'MakeUpGainMode', 'Property', ...
'SampleRate', fileReader.SampleRate);

scope = dsp.TimeScope(...
'SampleRate', fileReader.SampleRate,
'TimeSpan',3, ...
'BufferLength', fileReader.SampleRate*3*2,
'"YLimits',[-1 11,
'ShowGrid', true,

designVarSlopeFilter

'ShowLegend', true,
'ChannelNames', {'Original', 'Processed'});

In an audio stream loop:

Read in a frame of the audio file.

Apply highpass filtering using your biquad filter.

Split the audio signal into two bands.

Apply dynamic range compression to the lower band.

Remix the channels.

Write the processed audio signal to your audio device for listening.

N 6o o A W N K

Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
audioIn = fileReader();

audioIn = biquadFilter(audioIn,B,A);
[bandl,band2] = crossFilt(audiolIn);
bandlcompressed = dRCompressor(bandl);
audioQut = bandlcompressed + band2;
deviceWriter(audioOut);

scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRCompressor)

2-363

2 Functions in Audio Toolbox

Input Arguments

slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (u rad/sample).

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

* 'lo'-- Lowpass filter
* 'hi'-- Highpass filter

Data Types: char | string

Output Arguments

B — Numerator filter coefficients
3-by-4 matrix

Numerator filter coefficients, returned as a 3-by-4 matrix. Each column of B corresponds
to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix

2-364

designVarSlopeFilter

Denominator filter coefficients, returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your
cascaded IIR filter.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
designParamkEQ | designShelvingEQ

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2-365

2 Functions in Audio Toolbox

2-366

disconnectMIDI

Disconnect MIDI controls from audio object

Syntax

disconnectMIDI(audioObject)

Description

disconnectMIDI (audioObject) disconnects MIDI controls from your audio object,
audioObject. Only those MIDI connections established using configureMIDI are
disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.
echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =
1
Add MIDI connections using configureMIDI.

configureMIDI (echoPlugin, 'Delayl"');

disconnectMIDI

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI
connections you configured are saved as a structure. View details of the MIDI connections
using dot notation.

myMIDIConnections = getMIDIConnections(echoPlugin);
myMIDIConnections.Delayl

ans =
Law: 'lin'
Min: ©
Max: 1

MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object
and your MIDI device.

disconnectMIDI(echoPlugin);

Get MIDI connections of echoPlugin and verify that you have successfully disconnected
MIDI controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

Input Arguments

audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

See Also

Classes
audioPlugin | audioPluginSource

2-367

2 Functions in Audio Toolbox

Functions
configureMIDI | getMIDIConnections | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”

“MIDI Control Surface Interface”

Introduced in R2016a

2-368

fdesign.parameq

fdesign.parameq

Parametric equalizer filter specification

Syntax

d = fdesign.parameq(spec, specvaluel, specvalue2, ...)

d = fdesign.parameq(... fs)

Description

d = fdesign.parameq(spec, specvaluel, specvalue2, ...) constructsa

parametric equalizer filter design object, where spec is a non-case sensitive character
vector. The choices for spec are as follows:

* 'FO, BW, BWp, Gref, GO, GBW, Gp' (minimum order default)
« 'FO, BW, BWst, Gref, GO, GBW, Gst'

« 'FO, BW, BWp, Gref, GO, GBW, Gp, Gst'

« 'N, FO, BW, Gref, GO, GBW'

« 'N, FO, BW, Gref, GO, GBW, Gp'

« 'N, FO, Fc, Qa, GO'

+ 'N, FO, Fc, S, GO'

« 'N, FO ,BW, Gref, GO, GBW, Gst'

« 'N, FO, BW, Gref, GO, GBW, Gp, Gst'

* 'N, Flow, Fhigh, Gref, GO, GBW'

* 'N, Flow, Fhigh, Gref, GO, GBW, Gp'

* 'N, Flow, Fhigh, Gref, GO, GBW, Gst'

* 'N, Flow, Fhigh, Gref, GO, GBW, Gp, Gst'

where the parameters are defined as follows:

2-369

2 Functions in Audio Toolbox

Paramet |Definition Unit
er
BW Bandwidth
BWp Passband Bandwidth
BWst Stopband Bandwidth
Gref Reference Gain decibels
GO Center Frequency Gain decibels
GBW Gain at which Bandwidth decibels
(BW) is measured
Gp Passband Gain decibels
Gst Stopband Gain decibels
N Filter Order
FO Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain
GBW
Flow Lower Frequency at Gain
GBW
Qa Quality Factor
S Slope Parameter for

Shelving Filters

Regardless of the specification chosen, there are some conditions that apply to the
specification parameters. These are as follows:

» Specifications for parametric equalizers must be given in decibels

* To boost the input signal, set GO > Gref; to cut, set Gref > GO

* Forboost: GO > Gp > GBW > Gst > Gref; Forcut: GO < Gp < GBW < Gst <
Gref

* Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be
specified as a scalar trailing the other numerical values provided, and is assumed to be in
Hz.

2-370

fdesign.parameq

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,GO,GBW,Gst",
4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ, 'cheby2', 'SystemObject', true);
fvtool(parametricEQBiquad)

Magnitude Response (dB)
D C T -..__\.I T T T T .’._._l__-.. T T]
___.-"' \ i |
- \ / —
_2 N I|III III___ |
III |
4 F || II| .
) \ /
= \ '
% -5 F I|I | .
= \ /
= |I I'I
g |I i
= 871 I|I I i
10 | -
!
\ /
,
A2 T 7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9
MNormalized Frequency (= rad/sample)

2-371

2 Functions in Audio Toolbox

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a
quality factor of 10, and an 8 dB boost gain.

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);

parametricEQBiquad = design(parametricEQ, 'SystemObject', true)
fvtool(parametricEQBiquad)

Magnitude Response (dB)

Magnitude (dB)

0 01 02 03 04 05 06 07 08 09
Mormalized Frequency (=« rad/sample)

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

N = 4; % Filter order

FO = 1; % Center Frequency (normalized)
Fc = 0.4; % Cutoff Frequency (normalized)
GO = 10; % Center Frequency Gain (dB)

2-372

fdesign.parameq

Magnitude (dB)

S1
S2

5; lope for filter design 1

lope for filter design 2

1. % S
3; % S
filter = fdesign.parameq('N,F0O,Fc,S,G0"',N,F0O,Fc,S1,G0);
filterDesignS1 = design(filter, 'SystemObject',true);

filter.S = S2;
filterDesignS2 = design(filter, 'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);
legend(filterVisualization, 'Slope = 1.5','Slope = 3');
Magnitude Response (dB)
10 i) EE—
gt { Slope =15
:X Slope =3
|II|'
6l i
4 - -
2 - -
0 i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mormalized Frequency (=« rad/sample)

2-373

2 Functions in Audio Toolbox

See Also
design | designParamEQ | designShelvingEQ | designVarSlopeFilter | fdesign
| nultibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

2-374

generateAudioPlugin

generateAudioPlugin

Generate audio plugin from MATLAB class

Syntax

generateAudioPlugin className
generateAudioPlugin options className

Description

generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB
class specified by className. See Supported Compilers for a list of compilers supported
by generateAudioPlugin.

generateAudioPlugin options className specifies nondefault output folder, file
name, or file type. You can use the - juceproject option to create a zip file containing
generated C/C++ code and a JUCER project. Options can be specified in any grouping,
and in any order.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

2-375

https://www.mathworks.com/support/compilers.html

2 Functions in Audio Toolbox

2-376

A VST 2 plugin named Echo is saved to your specified folder. The extension of your plugin
depends on your operating system.

Specify File Name of Generated Plugin
generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

A VST 2 plugin named awesomeEffect is saved to your current folder. The extension of
your plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin

generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named coolEffect is saved to your specified folder. The extension of
your plugin depends on your operating system.

Generate win32 Plugin from win64 System
generateAudioPlugin -win32 audiopluginexample.Echo

A 32-bit VST 2 plugin named Echo.d11 is saved to your current folder.

Generate Zip File Compatible with JUCE 5.3.2
generateAudioPlugin -juceproject audiopluginexample.Echo

A zip file containing generated C/C++ code and a JUCER project file suitable for use with
JUCE 5.3.2 is saved to your current folder.

Input Arguments

options — Options to specify output folder, plugin name, and file type
-outdir folder | -output fileName | -win32

Options can be specified in any grouping, and in any order.

generateAudioPlugin

Option

Description

-outdir folder

Generates a plugin or zip file to a specific folder. By
default, the generated plugin is placed in the current
folder. If folder is not in the current folder, specify the
exact path.

-output fileName

Specifies the file name of the generated plugin or zip file.
The appropriate extension is appended to the fileName
based on the platform on which the plugin or zip file is
generated. By default, the plugin or zip file is named
after the class.

-win32

Creates a 32-bit audio plugin. Valid only on win64.

-juceproject

Creates a zip file containing generated C/C++ code and
a JUCER project file suitable for use with JUCE 5.3.2. You
can use the generated zip file to modify the generated
plugin or compile it to a format other than VST 2.4. This
option requires a MATLAB Coder™ license. To use the
generated files with JUCE, you must obtain your own
appropriately licensed copy of JUCE.

className — Name of the plugin class to generate

plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It
must derive from either the audioPlugin class or the audioPluginSource class.

You can specify the plugin class to generate by specifying its class name or file name. For
example, the following syntaxes perform equivalent operations:

* generateAudioPlugin myPlugin

* generateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a
package, you must specify the package as a file path. For example, the following syntaxes

perform equivalent operations:

* generateAudioPlugin myPluginPackage.myPlugin

* generateAudioPlugin +myPluginPackage/myPlugin.m

2-377

2 Functions in Audio Toolbox

Limitations
Build problems can occur when using folder names with spaces. For more information,
see “Build Process Support for Folder Names with Spaces or Special Characters”

(Simulink Coder) and Why is the build process failing for a shipped model in Simulink or
for a model run in Accelerator mode?.

Definitions

Generated Plugin File Extension

The extension of your generated plugin depends on your operating system.

Operating System File Extension

Windows .dll

0OSX .vst

See Also

Audio Test Bench | audioPlugin | audioPluginSource | loadAudioPlugin |
validateAudioPlugin

Topics

“Design an Audio Plugin”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

2-378

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

integratedLoudness

integratedLoudness

Measure integrated loudness and loudness range

Syntax

loudness = integratedLoudness(audiolIn,Fs)

loudness = integratedLoudness(audiolIn,Fs,channelWeights)
[Lloudness, loudnessRange] = integratedLoudness()
Description

loudness = integratedLoudness(audioln,Fs) returns the integrated loudness of
an audio signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128
standards define the algorithms to calculate integrated loudness.

loudness = integratedlLoudness(audiolIn,Fs,channelWeights) specifies the
channel weights used to compute the integrated loudness. channelWeights must be a
row vector with the same number of elements as the number of channels in audioIn.

[loudness, loudnessRange] = integratedLoudness() returns the loudness
range of the audio signal using either of the previous syntaxes. The EBU R 128 Tech 3342
standard defines the loudness range computation.

Examples

Determine Integrated Loudness
Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz
sample rate.

48e3;
sampleRate*2;

sampleRate
increment

2-379

2 Functions in Audio Toolbox

2-380

amplitude
frequency

107(0/20);
le3;

sineGenerator = audioOscillator(...
'SampleRate',sampleRate, ...
'SamplesPerFrame',increment, ...
"Amplitude',amplitude, ...
'"Frequency', frequency);
signal = sineGenerator();
Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal, sampleRate)

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four
elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault
channel weighting vector.

integratedLoudness(signal, fs,weightingVector)
integratedLoudness(signal, fs)

standardLoudness
nonStandardLoudness

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44pl-stereo-25secs.mp3');

X1 = x(1l:fs*5,:);
x2 = x(5e5:5e5+5*fs, :);
x3 = x(end-5*fs:end, :);

Calculate the loudness and loudness range of the total signal and of each interval.

integratedLoudness

[L,LRA] = integratedLoudness(x,fs);

[L1,LRA1] = integratedLoudness(x1,fs);
[L2,LRA2] = integratedLoudness(x2,fs);
[L3,LRA3] = integratedLoudness(x3,fs);

fprintf (['Loudness: %0.2f\n',...
'Loudness range: %0.2f\n\n',...
'Beginning loudness: %0.2f\n',...
'Beginning loudness range: %0.2f\n\n',...
'Middle loudness: %0.2f\n',...
'Middle loudness range: %0.2f\n\n',...
'"End loudness: %0.2f\n',...
'"End loudness range: %0.2f\n'], ...
L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Input Arguments

audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio
channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

» Ifyou use the default channelWeights, the input signal has a maximum of five
channels. Specify the channels in this order: [Left, Right, Center, Left surround, Right
surround].

» Ifyou specify nondefault channelWeights, the input signal must have the same
number of columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

Data Types: single | double

2-381

2 Functions in Audio Toolbox

2-382

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the channels of the audioIn matrix in this order: [Left, Right,
Center, Left surround, Right surround].

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center,
Left surround, Right surround].

Data Types: single | double

Output Arguments

loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The
algorithm computes the loudness by breaking down the audio signal into 0.4-second
segments with 75% overlap. If the input signal is less than 0.4 seconds, Loudness is
returned empty.

Data Types: single | double

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes
the loudness range by breaking down the audio into 3-second segments with 2.9-second
overlap. If the input signal is less than three seconds, LloudnessRange is returned empty.

Data Types: single | double

integratedLoudness

Algorithms

The integratedLoudness function returns the integrated loudness and loudness range
(LRA) of an audio signal. You can specify any number of channels and nondefault channel
weights used for loudness measurements. The integratedLoudness algorithm is
described for the general case of n channels.

X —»

Calculate
mL; r
T i Relative
= Threshold1
h
Calculate mP- AT | mP; iy | mPy P
Momentary t I ¥ ! o ! ; . » Mean - E:ﬂ:‘:; | » Integrated Loudness
Fower Lo [
) Foml; = —70 ifmP =T
K-Weighting ¥
£ sl = =70 fsl =K
,,,,,,,,,,,,
Calculate 2 . | ' L; ! ! sl i
sP; Compute <L | 1 i | | k Determine
Sh:rtTErm }—l o ‘ ¥ i T ¥ T Range Loudness Range
awer i

Compute Loudness

Weight & Sum Convertto
Channels LoudnessScale

Integrated Loudness and Loudness Range

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted
filter shapes the frequency spectrum to reflect perceived loudness.

Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

w
mP; = %kgly?[k]

* mP,; is the momentary power of the ith segment of a channel.

2-383

2 Functions in Audio Toolbox

2-384

* wis the segment length in samples.
The momentary loudness, mL, is computed for each segment:

mL; = —0.691 + 10logqg

n
S G xmP, C)) LUFS

c=1

* G, is the weighting for channel c.
The momentary power is gated using the momentary loudness calculation:

mPi - ij

j={i| mLi= =70}

The relative threshold, I, is computed:

n
= -0.691 +1010g10(S Gexle|-10

c=1

I, is the mean momentary power of channel c:

1
IC = —2 mP(j, c)

[J] i
The momentary power subset, mP;, is gated using the relative threshold:
mPj— mPy

k={jlmpj=T}

The momentary power segments are averaged:

P= |1T|;mp"

The integrated loudness is computed by passing the mean momentary power subset,
P, through the Compute Loudness system:

n
> Gy xP.| LUFS

c=1

Integrated Loudness = —0.691 + 10logqg

integratedLoudness

Loudness Range

1

The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

1 3 5
SPi = Wkglyi [k]

* SP,;is the short-term power of the ith segment of a channel.
* wis the segment length in samples.
The short-term loudness, sL, is computed for each segment:

sL;= —0.691 + 101logso

n
E GC X SP(i, C))
c=1
* G, is the weighting for channel c.
The short-term loudness is gated using an absolute threshold:
sLi—sL j

j={i|sLiz =70}

The gated short-term loudness is converted back to linear, and then the mean is
taken:

sP; = -5 100" 0]
i1 4

The relative threshold, K, is computed:

K= -20+ 10109’10(5["])

The short-term loudness subset, sL;, is gated using the relative threshold:
SLj— sLy

k={jlsLji=K}

The short-term loudness subset, sLy, is sorted. The loudness range is calculated as
between the 10th and 95th percentiles of the distribution, and is returned in loudness
units (LU).

2-385

2 Functions in Audio Toolbox

2-386

References

[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to
Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level
of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128
Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

System Objects
loudnessMeter | weightingFilter

Blocks
Loudness Meter

Introduced in R2016b

getMIDIConnections

getMIDIConnections

Get MIDI connections of audio object

Syntax

connectionInfo = getMIDIConnections(audioObject)

Description

connectionInfo = getMIDIConnections(audioObject) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio
object, audioObject. Only those MIDI connections established using configureMIDI
are returned.

The connectionInfo structure contains a substructure for each tunable property of
audioObject that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin
Create an object of the audio plugin example audiopluginexample.Echo.
echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls
on the default MIDI device.

configureMIDI (echoEffect, 'Delayl’,1001);
configureMIDI (echoEffect, 'Gainl' ,1002);
configureMIDI (echoEffect, 'Delay2',1003);
configureMIDI (echoEffect, 'Gain2' ,1004);

2-387

2 Functions in Audio Toolbox

2-388

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =
Delayl: [1x1 struct]
Gainl: [1x1 struct]
Delay2: [1x1 struct]
Gain2: [1x1 struct]

View details of the Delay1l MIDI connection using dot notation.

connectionInfo.Delayl

ans =
Law: 'lin'
Min: ©
Max: 1

MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments

audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

Output Arguments

connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and MIDI
devices, returned as a structure. Only those MIDI connections established using
configureMIDI are returned. The connectionInfo structure contains a substructure
for each established MIDI connection. Each substructure contains the control number, the
device name of the corresponding MIDI control, and the property mapping information
(mapping rule, minimum value, and maximum value).

getMIDIConnections

See Also

Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

2-389

2 Functions in Audio Toolbox

loadAudioPlugin

Load VST, VST3, and AU plugins into MATLAB environment

Syntax

hostedPlugin = loadAudioPlugin(pluginpath)

Description

hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST, VST3, or AU
audio plugin specified by pluginpath. On Windows, you can load VST and VST3 plugins.
On macOS, you can load AU, VST, and VST3 plugins.

Your hosted plugin has two display modes: Parameters and Properties. The default
display mode is Properties.

* Parameters -- Interact with normalized parameter values of the hosted plugin using
set and get functions.

* Properties -- Interact with heuristically interpreted parameters with real-world
values. You can use standard dot notation to set and get the values while using this
mode.

You can specify the display mode of the hosted plugin using standard dot notation, for
example:

hostedPlugin.DisplayMode = 'Parameters’;

See “Host External Audio Plugins” for a discussion of display modes and a walkthrough of
both modes of interaction.

You can interact with and exercise the hosted plugin using the following functions.

Process Audio

* audioOut = process(hostedPlugin,audioIn)

2-390

loadAudioPlugin

Returns an audio signal processed according to the algorithm and parameters of the
hosted plugin. For source plugins, call process without an audio input.

Set and Get Normalized Parameter Values
* value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized
values are in the range [0,1]. You can specify a parameter by its name or by its index.
To specify the name, use a character vector.

* setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue.
Normalized values are in the range [0,1].

Get High-Level Information About the Hosted Plugin
* dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display
labels of the hosted plugin.

* pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.
Set the Environment in Which the Plugin Is Run
+ frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its
processing function (source plugins only).

* setSamplesPerFrame(hostedPlugin, frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its
processing function (source plugins only).

+ setSampleRate(hostedPlugin, sampleRate)

Sets the sample rate of the hosted plugin.
* sampleRate = getSampleRate(hostedPlugin)

Returns the sample rate in Hz at which the plugin is being run.

2-391

2 Functions in Audio Toolbox

Examples

Host External Plugins in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin in
MATLAB®.

Use the fullfile command to determine the full path to the oscillator VST plugin and
parametric equalizer VST plugin included with Audio Toolbox™. If you are using a Mac,
replace the .d11 file extension with .vst.

oscPluginPath = ...
fullfile(matlabroot, 'toolbox/audio/samples/oscillator.dll"');

EQPluginPath = ...
fullfile(matlabroot, 'toolbox/audio/samples/ParametricEqualizer.dll"');

Create external plugin objects by calling LloadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);
hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either the externalAudioPlugin or
externalAudioSourcePlugin class. Because oscillator.dll is a source audio
plugin, the hosted object derives from externalAudioSourcePlugin. Use class() to
verify the classes of the hosted plugins.

class(hostedPlugin)

ans =

'externalAudioPlugin'’
class(hostedSourcePlugin)

ans =

"externalAudioPluginSource'

2-392

loadAudioPlugin

Call the hosted plugins to display basic information about them. This information includes
the format, the plugin name, the number of channels in and out, and the tunable
properties of the plugin. Source plugins also display the frame size of the plugin.

hostedSourcePlugin
hostedPlugin

hostedSourcePlugin =
VST plugin 'oscillator' source, 1 out, 256 samples

Frequency: 100 Hz
Amplitude: 1 AU
DCOffset: 0 AU

hostedPlugin =
VST plugin 'ParametricEQ' 2 in, 2 out

LowPeakGain: 0 dB
LowCenterFrequency: 100 Hz
LowQFactor: 2
MediumPeakGain: 0 dB
MediumCenterFrequency: 1000 Hz
MediumQFactor: 2
HighPeakGain: 0 dB
HighCenterFrequency: 10000 Hz
HighQFactor: 2

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .d11 file extension with .vst.

pluginPath = ...
fullfile(matlabroot, 'toolbox/audio/samples/ParametricEqualizer.dll"');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes

to your audio device. Set the sample rate of the hosted plugin to the sample rate of the
input to the plugin.

2-393

2 Functions in Audio Toolbox

2-394

fileReader = dsp.AudioFileReader('FunkyDrums-44pl-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin, fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.
hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
x = fileReader();
y = process(hostedPlugin,x);
deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using
a Mac, replace the .d11 file extension with .vst.

pluginPath = fullfile(matlabroot, 'toolbox', 'audio', 'samples', 'oscillator.dll"');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude
hostedSourcePlugin.Frequency

0.5;
16000;

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate (hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

loadAudioPlugin

k =1;
for i = 1:1000
hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
y = process(hostedSourcePlugin);
deviceWriter(y);
if (hostedSourcePlugin.Frequency - 30 <= 0.1) || ..
(hostedSourcePlugin.Frequency + 30 >= 20e3)
k = -1%k;
end
end

release(deviceWriter)

Input Arguments

pluginpath — Location of external plugin
character vector | string

Location of the external plugin, specified as a character vector. Use the full path to
specify the audio plugin you want to host in MATLAB. If the plugin is located in the
current folder, specify it by its name.

Example: LloadAudioPlugin('coolPlugin.dll")
Example: ToadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll"')

Plugin Path for Mac

For macOS, the plugin locations are predetermined depending on if the plugin was saved
system wide or for a particular user.

This table shows the system-wide paths.

Plugin Type |Path

VST2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst

VST3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3

AU /Library/Audio/Plug-Ins/Components/coolPlugin.component

This table shows the user-specific paths.

2-395

2 Functions in Audio Toolbox

2-396

Plugin Type |Path

VST2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst

VST3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3

AU ~/Library/Audio/Plug-Ins/Components/coolPlugin.component

Output Arguments

hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

Object of an external plugin, derived from the externalAudioPlugin or
externalAudioSourcePlugin class. You can interact with the hosted plugin as a DAW
would, with the additional functionality of the MATLAB environment.

Limitations

The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit
plugins using the LloadAudioPlugin function.

See Also

audioPlugin | audioPluginSource | externalAudioPlugin |
externalAudioPluginSource

Topics

“Host External Audio Plugins”

Introduced in R2016b

midicallback

midicallback

Call function handle when MIDI controls change value

Syntax
oldFunctionHandle = midicallback(midicontrolsObject, functionHandle)
oldFunctionHandle = midicallback(midicontrolsObject,[])

currentFunctionHandle = midicallback(midicontrolsObject)

Description

oldFunctionHandle = midicallback(midicontrolsObject, functionHandle)
sets functionHandle as the function handle called when midicontrolsObject
changes value, and returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the
function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the
current function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous
function with your MIDI controls object, mc.

mc = midicontrols;
midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on
the command line.

2-397

2 Functions in Audio Toolbox

0.5079
0.5000
0.4921
0.4841
0.4762
0.4683
0.4603

0.4683

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ~C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control. Make
the axis constant.

axis([0,2*pi,-1,1]);

axis manual

hold on

sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

2-398

midicallback

4\ Figure 1 EI@

File Edit View Insert Tools Desktop Window Help ~

Odde RMRRAONOELE LS/ 08 ad

0.8 r
0.6 r
0.4 -

0.2r

-0.2 1
041
-0.6

-0.8 -

Use the midicallback function to associate your sinePlotter function with the
control specified by your midicontrolsObject. Move your specified MIDI control. The
plot updates automatically with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

2-399

2 Functions in Audio Toolbox

2-400

(4] Figure 1 EI@

File Edit View Insert Tools Desktop Window Help ~

ODdde FMRRAIONOELEL- S 0E8E ad

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use
midicallback to associate your MIDI control object with the function you created.
Verify that your object is associated with your function.

displayControlValue = @(object) disp(midiread(object));
midicallback(midicontrolsObject,displayControlValue);
currentFunctionHandle = midicallback(midicontrolsObject)

midicallback

currentFunctionHandle =
@(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on
the command line.

0.3095
0.4603
0.6746
0.7381
0.8175
0.8571
0.9048

Define an anonymous function to print the current value of the MIDI control rounded to
two significant digits. Use midicallback to associate your MIDI controls object with the
function you created. Return the old function handle.

displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));
oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =
@(object)disp(midiread(object))
Move a control to display its current normalized value rounded to two significant digits.

.91
.83
.67
.49
.29
.18
.05

[cNoNoNoNoNoNO

Remove the association between the object and the function. Return the old function
handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

2-401

2 Functions in Audio Toolbox

oldFunctionHandle =
@(object) fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle midicallback(midicontrolsObject)

currentFunctionHandle

[]

Associate a Function with MIDI Controls

Define this function and save it to your current folder.
function plotSine(midicontrolsObject)
frequency = midiread(midicontrolsObject);

X = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);
plot(x,sinusoid)

axis([0,10,-1.1,1.11);

ylabel('Amplitude');

xlabel('Time (s)');

title('Sine Plot')

legend(sprintf('Frequency = %0.2f Hz', frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function.
Use midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency
updates when you move MIDI controls.

midicontrolsObject = midicontrols;

plotSineHandle = @plotSine;
midicallback(midicontrolsObject,plotSineHandle);

2-402

midicallback

4 Figure 1 = e =%
File Edit View Insert Tools Desktop Window Help ~
NEde AR EL- 2|08 D

Sine Plot

Frequency = 0.55 HZL i

0.8 r

0.6

0.4 -

0.2

Amplitude

0.2

041

06

-0.8 -

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

functionHandle — New function handle
function handle

New function handle, specified as a function handle that contains one input argument.

The new function handle is called when midicontrolsObject changes value. For
information on what function handles are, see “Function Handles” (MATLAB).

2-403

2 Functions in Audio Toolbox

Output Arguments

oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function
handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function
handle.

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols |
midiid | midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2-404

midicontrols

midicontrols

Open group of MIDI controls for reading

Syntax

midicontrolsObject = midicontrols

midicontrolsObject = midicontrols(controlNumbers)
midicontrolsObject = midicontrols(controlNumbers,initialValues)
midicontrolsObject = midicontrols(__ , 'MIDIDevice',deviceName)
midicontrolsObject = midicontrols(_ , 'OutputMode',mode)
Description

midicontrolsObject = midicontrols returns an object that listens to all controls on
your default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If you
call midiread before a control is moved, midiread returns the initial value of your
midicontrols object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls
specified by controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues)
specifies initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(, 'MIDIDevice',deviceName)
specifies the MIDI device your midicontrols object listens to, using any of the previous
syntaxes.

midicontrolsObject = midicontrols(, 'OutputMode',mode) specifies the

range of values returned by midiread and accepted as initialValues for
midicontrols and as controlValues for midisync.

2-405

2 Functions in Audio Toolbox

2-406

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols
midiread(midicontrolsObject)

midicontrolsObject =
midicontrols object: any control on 'BCF2000'
ans =

0

Move any control on your MIDI device. Use midiread to return the most recent value of
the last control moved.

midiread(midicontrolsObject)
ans =

0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ~C to abort.
Waiting for control message...

Create an object that responds to the control you specified.
midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

midicontrols

midicontrolsObject = midiread(midicontrolsObject);
ans =

0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumberl,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
[controlNumber4,~] = midiid;

controlNumbers = [controlNumberl, controlNumber3;...
controlNumber2, controlNumber4]

Move the control you wish to identify; type ~C to abort.

Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

controlNumbers =

1081 1085
1082 1087

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

2-407

2 Functions in Audio Toolbox

2-408

ans

.0873 0.5000
.5000 0.5000

[oNo]

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

midiid;
midiid;

[controlNumberl,~]
[controlNumber2,~]

controlNumbers = [controlNumberl, controlNumber2];

Move the control you wish to identify; type ~C to abort.

Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 12;
midicontrolsObject = midicontrols(controlNumbers,initialValue, 'OutputMode’, ' rawmidi');

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)
ans =

63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the MATLAB
command line:

setpref midi DefaultDevice BCF2000

midicontrols

This preference persists across MATLAB sessions. You do not need to set it again unless
you want to change your default device.

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with
identification number 1001. Create a midicontrols object, which listens to control
number 1001 on your Behringer BCF2000 device.

midicontrolsObject = midicontrols(1001, 'MIDIDevice', 'BCF2000');

Input Arguments

controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid to
interactively identify the control numbers of your device. See “MIDI Device Control
Numbers” on page 2-411 for an advanced explanation of how controlNumbers are
determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object
responds to any control on your MIDI device.

Example: 1081

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as
controlNumbers. If you specify initialValues as a scalar, all controls specified by
controlNumbers are assigned that value.

The value associated with your MIDI controls cannot be determined until you move a

MIDI control. If you specify an initial value associated with your MIDI control, the initial
value is returned by the midiread function until the MIDI control is moved.

2-409

2 Functions in Audio Toolbox

2-410

» If QutputMode is specified as 'normalized’, then initial values must be in the range
[0,1]. Actual initial values are quantized and can be slightly different from initial
values specified when your midicontrols object is created.

* If OutputMode is specified as ' rawmidi', then initial values must be integers in the
range [0,127]

Example: 0.3

Example: [0,0.3,0.6]

Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | intl1l6 | int32 | int64 | uint8 | uint16 |

uint32 | uint64

deviceName — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. The specified deviceName can be a substring of the exact name of
your device. If you do not specify deviceName, the default MIDI device is used. See “Set
the Default MIDI Device” on page 2-408 for an example of specifying a default MIDI
device.

If you do not set a default MIDI device, the host operating system chooses the default
device in an unspecified way. As a best practice, use midiid to identify the name of the
device you want.

Example: 'MIDIDevice', 'BCF2000 MIDI 1°
Data Types: char | string

mode — Output mode for MIDI control value
‘normalized’' (default) | ' rawmidi’

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

* 'normalized' — Values of your MIDI control are normalized. If your midicontrols
object is called by midiread, then values in the range [0,1] are returned.

* ‘'rawmidi' — Values of your MIDI control are not normalized. If your midicontrols
object is called by midiread, then integer values in the range [0,127] are returned.

Example: 'OutputMode', 'normalized’

midicontrols

Example: 'OutputMode’, 'rawmidi'

Data Types: char | string

Output Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

Definitions

MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) x 1000 +
(MIDI Controller Number).

* MIDI Channel Number is the transmission channel that your device uses to send
messages. This value is in the range 1-16.

* MIDI Controller Number is a number assigned to an individual control on your MIDI
device. This value is in the range 1-127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller
Number.

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiid | midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2-411

2 Functions in Audio Toolbox

2-412

midiid

Interactively identify MIDI control

Syntax

[controlNumber,deviceName] = midiid

Description

[controlNumber,deviceName] = midiid returns the control number and device
name of the MIDI control you move. Call the function and then move the control you want
to identify. The function detects which control you move and returns the control number
and device name that specify that control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want
to identify.

[ctl,dev] = midiid;
Move the control you wish to identify; type ~C to abort.
Waiting for control message...

ctl =
1002

midiid

dev =
nanoKONTROL

Output Arguments

controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The device manufacturer assigns the
value to the control for identification purposes.

deviceName — MIDI device nhame
string

MIDI device name assigned by the device manufacturer or host operating system,
specified as a string.

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2-413

2 Functions in Audio Toolbox

2-414

midiread

Return most recent value of MIDI controls

Syntax

controlValues = midiread(midicontrolsObject)

Description

controlValues = midiread(midicontrolsObject) returns the most recent value
of the MIDI controls associated with the specified midicontrolsObject. To create this
object, use the midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;
controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

midiid
midiid

[controlOne,~]
[controlTwo,~]

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

controlOne =

1081

midiread

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

controlTwo =
1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwol];
midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a
vector that corresponds to your control numbers vector, controlNumbers.

tic
while toc < 5
controlValues = midiread(midicontrolsObject)
end
controlValues =

0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object
cannot be determined until you move the MIDI control. Specify an initial value associated
with your MIDI control. The midiread function returns the initial value until the MIDI
control is moved.

initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);

2-415

2 Functions in Audio Toolbox

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44pl-stereo-1lsecs.mp3"');

deviceWriter = audioDeviceWriter(...
‘SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by
the control on your MIDI device, and then write the frame to your audio output device. By
default, the control value returned by midiread is normalized.

while ~isDone(fileReader)
audioData = step(fileReader);

controlValue = midiread(midicontrolsObject);

gain = controlValue*2;
audioDataWithGain = audioData*gain;

play(deviceWriter,audioDataWithGain);
end

Close the input file and release your output device.

release(fileReader);
release(deviceWriter);
Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

Output Arguments

controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0, 127]

2-416

midiread

Most recent values of MIDI controls, returned as normalized values in the range [0, 1],
or as integer values in the range [0, 127]. The output values depend on the OutputMode
specified when your midicontrols object is created.

* If QutputMode was specified as 'normalized’, then midiread returns values in the
range [0, 1]. The default OutputMode is 'normalized’.

» If OutputMode was specified as ' rawmidi', then midiread returns integer values in
the range [0, 127], and no quantization is required.

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2-417

2 Functions in Audio Toolbox

2-418

midisync

Send values to MIDI controls for synchronization

Syntax

midisync(midicontrolsObject)
midisync(midicontrolsObject,controlValues)

Description

midisync(midicontrolsObject) sends the initial values of controls to your MIDI
device, as specified by your MIDI controls object. To create this object, use the
midicontrols function. If your MIDI device can receive and respond to messages, it
adjusts its controls as specified.

Note Many MIDI devices are not bidirectional. Calling midisync with a unidirectional
device has no effect. midisync cannot tell whether a value is successfully sent to a
device or even whether the device is bidirectional. If sending a value fails, no errors or
warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the
MIDI controls associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value
Use midiid to identify a control on your default MIDI device.
[controlNumber,~] = midiid;

Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

midisync

Create a MIDI controls object. Specify an initial value for your control. Call midisync to
set the specified control on your device to the initial value.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialValue);
midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumberl,~] midiid;
[controlNumber2,~] midiid;
[controlNumber3,~] = midiid;
controlNumbers = [controlNumberl, controlNumber2, controlNumber3];

Move the control you wish to identify; type ~C to abort.

Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done
Move the control you wish to identify; type ~C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to
set the specified control on your device to the initial value.

controlValues = [0,0,1];
midicontrolsObject = midicontrols(controlNumbers,controlValues);
midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the
physical controls on your device.

for i = 1:100
controlValues = controlValues + [0.006,0.008,-0.008];
midisync(midicontrolsObject,controlValues);
pause(0.1)

end

Create Ul Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

2-419

2 Functions in Audio Toolbox

2-420

function trivialmidigui(controlNumber,deviceName)

slider = uicontrol('Style', 'slider");

mc = midicontrols(controlNumber, '"MIDIDevice',deviceName);
midisync(mc);

set(slider, 'Callback',@slidercb);

midicallback(mc, @mccb);

function slidercb(slider,~)
val = get(slider, 'Value');
midisync(mc, val);
disp(val);

end

function mccb(mc)
val = midiread(mc);
set(slider, 'Value',val);
disp(val);

end

end

Use midiid to identify a control number and device name. Call the function you created,
specifying the control number and device name as inputs.

[controlNumber,deviceName] = midiid;
trivialmidigui(controlNumber,deviceName)

The slider on the user interface is synchronized with the specified control on your device.
Move one to see the other respond.

Input Arguments

midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

midisync

Values sent to MIDI device, specified as a scalar or an array the same size as
controlNumbers of the associated midicontrols object. If you do not specify
controlValues, the default value is the initialValues of the associated
midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

» If QutputMode is specified as 'normalized’, then controlValues must consist of
values in the range [0, 1]. The default OutputMode is 'normalized"'.

* If OutputMode is specified as ' rawmidi', then controlValues must consist of
integer values in the range [0, 127].

Example: 0.3
Example: [0,0.3,0.6]
Example: 5

Example: [5;15;20]

Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also

Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midiread | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2-421

2 Functions in Audio Toolbox

2-422

validateAudioPlugin

Test MATLAB source code for audio plugin

Syntax

validateAudioPlugin classname
validateAudioPlugin options classname

Description

validateAudioPlugin classname generates and runs a “Test Bench Procedure” on
page 2-425 that exercises your audio plugin class.

validateAudioPlugin options classname specifies options to modify the default
“Test Bench Procedure” on page 2-425.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench Echo.m'... done.
Running testbench... passed.

Generating mex file 'testbench Echo mex.mexw64'... done.
Running mex testbench... passed.

Deleting testbench.
Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

validateAudioPlugin

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench Echo.m'... done.
Running testbench... passed.

Skipping mex.

Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench Echo.m'... done.
Running testbench... passed.

Generating mex file 'testbench Echo mex.mexw64'... done.
Running mex testbench... passed.

Keeping testbench.
Ready to generate audio plug-in.

Two test benches are saved to your current folder:

* testbench Echo.m
* testbench Echo_mex.mexw64

Skip MEX Version and Keep Test Bench
validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench Echo.m'... done.
Running testbench... passed.

Skipping mex.

Keeping testbench.

One test bench is saved to your current folder:

2-423

2 Functions in Audio Toolbox

2-424

* testbench Echo.m

Input Arguments

options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench.
Options can be specified together or separately, and in any order.

* -nomex -- validateAudioPlugin does not generate and run a MEX version of the
test bench file. This option significantly reduces run time of the test bench procedure.

* -keeptestbench -- validateAudioPlugin saves the generated test benches to the
current folder.

classname — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the
audioPlugin class or the audioPluginSource class. The validateAudioPlugin
function exercises an instance of the specified plugin class.

You can specify the plugin class to validate by specifying its class name or file name. For
example, the following syntaxes perform equivalent operations:

* validateAudioPlugin myPlugin
* validateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a
package, you must specify the package as a file path. For example, the following syntaxes
perform equivalent operations:

* validateAudioPlugin myPluginPackage.myPlugin
* validateAudioPlugin +myPluginPackage/myPlugin.m

Limitations

The valdiateAudioPlugin function is compatible with Windows and Mac operating
systems. It is not compatible with Linux.

validateAudioPlugin

Definitions

Test Bench Procedure

The valudateAudioPlugin function uses dynamic testing to find common audio plugin
programming mistakes not found by the static checks performed by
generateAudioPlugin. The function:

1
2
3
4

Runs a subset of error checks performed by generateAudioPlugin.
Generates and runs a MATLAB test bench to exercise the class.
Generates and runs a MEX version of the test bench.

Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin, step
through the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test
bench files are saved to your current folder.

See Also

Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”

Introduced in R2016a

2-425

System objects in Audio Toolbox

3 System objects in Audio Toolbox

parameterTuner

Tune object parameters while streaming

Syntax

H = parameterTuner(obj)

Description

H = parameterTuner(obj) creates a parameter tuning Ul and returns a figure handle,
H.

Examples

Tune Parameters of Multiple Objects

parameterTuner enables you to graphically tune parameters of multiple objects. In this
example, you use a crossover filter to split a signal into multiple subbands and then apply
different effects to the subbands.

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3',
'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a crossoverFilter with two crossovers to split the audio into three bands. Call
visualize to plot the frequency responses of the filters. Call parameterTuner to open
a Ul to tune the crossover frequencies while streaming.

xFilt = crossoverFilter('SampleRate', fileReader.SampleRate, 'NumCrossovers',2);

visualize(xFilt)
parameterTuner(xFilt)

3-2

parameterTuner

Audio Parameter Tuner: crossoverFilter [xFilt] EI@

er frequency 1 (Hz) n
er frequency 2 (Hz) n
Slope 1 (dBfoctay

Slope 2 (dBfoctay

Create two compressor objects to apply dynamic range compression on two of the
subbands. Call visualize to plot the static characteristic of both of the compressors.
Call parameterTuner to open Uls to tune the static characteristics.

cmprl = compressor('SampleRate',fileReader.SampleRate);
visualize(cmprl)
parameterTuner(cmprl)

cmpr2 = compressor('SampleRate',fileReader.SampleRate);

visualize(cmpr2)
parameterTuner(cmpr2)

3-3

3 System objects in Audio Toolbox

Audho Parameter Tuner: compressor [cmprl]

Compression ratio n -
Threshold (dB) n
Knee width (dB) n-
Attack time (=) n -
Release time (g) n -

Make-up gain (dE) n

3-4

parameterTuner

Audio Parameter Tuner: compressor [cmpr.] EI@
Caompr on ratio n -
Threshold (dB) n
Knee width (dB) n-
Attack time (=) n -

Release time (g) n -

Make-up gain (dE) n

Create an audiopluginexample.Chorus to apply a chorus effect to one of the bands.
Call parameterTuner to open a Ul to tune the chorus plugin parameters.

chorus = audiopluginexample.Chorus;
setSampleRate(chorus, fileReader.SampleRate);
parameterTuner(chorus)

3 System objects in Audio Toolbox

Audha Parameter Tuner: audiopluginesample. Charus [charus] EI@
Basze delay (s n - 0.0z
Tap 1 Depth of modulation n- 0.1
Tap 1 Rate of modulation (Hz) n- 0.m
Tap 2 Depth of modulation n- 0.03

‘ate of modulation (Hz) n- 0.0z
Ary mix n 0&

In an audio stream loop:

Read in a frame of audio from the file.

Split the audio into three bands using the crossover filter.

Apply dynamic range compression to the first and second bands.
Apply a chorus effect to the third band.

Sum the audio bands.

Write the frame of audio to your audio device for listening.

S U A W N M

while ~isDone(fileReader)
audioIn = fileReader();

[bl,b2,b3] = xFilt(audioIn);

bl
b2

cmprl(bl);
cmpr2(b2);

3-6

parameterTuner

b3 = process(chorus,b3);
audioOut = bl+b2+b3;
deviceWriter(audioOut);

drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Hosted Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Use loadAudioPlugin to load
an equalizer plugin. If you are using a Mac, replace the .d11 file extension with .vst.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate', fileReader.SampleRate);

pluginPath = ...

fullfile(matlabroot, 'toolbox/audio/samples/ParametricEqualizer.dll"');
eq = loadAudioPlugin(pluginPath);
setSampleRate(eq, fileReader.SampleRate);

Call parameterTuner to open a Ul to tune parameters of the equalizer while streaming.

parameterTuner(eq)

3 System objects in Audio Toolbox

Audio Parameter Tuner externalAudicPlugin [eq]

Low Peak Gain (dB)

Low Center Frequency (Hz)

Low Q Factar

Medium Pe ain (dB)

Medium Center Frequency (Hz)

Medium Q Factar

High Peak Gain (dB)

High Center Frequency (Hz)

High @ Factar

= |[=][=]
O I
oo |
0 R
O
oo |
O T
O
0 EXEE

In an audio stream loop:

1 Read in a frame of audio from the file.

2 Apply equalization.

3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
audioIn = fileReader();
audioOut = process(eq,audioIn);
deviceWriter(audioOut);

drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

3-8

parameterTuner

release(fileReader)
release(deviceWriter)

Tune MATLAB Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create an
audiopluginexample.Flanger to process the audio data and set the sample rate.

fileReader = dsp.AudioFileReader('RockGuitar-16-96-stereo-72secs.flac');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

flanger = audiopluginexample.Flanger;
setSampleRate(flanger, fileReader.SampleRate);

Call parameterTuner to open a Ul to tune parameters of the flanger while streaming.

parameterTuner(flanger)

3-9

3 System objects in Audio Toolbox

Audha Parameter Tuner: audiopluginesample Flanger [flanger]

0.001

3-10

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply flanging.
3 Write the frame of audio to your audio device for listening.
while ~isDone(fileReader)
audioIn = fileReader();

audioOut = process(flanger,audioln);
deviceWriter(audioOut);

drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

parameterTuner

release(fileReader)
release(deviceWriter)

Tune Compressor Parameters

Create an dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a compressor to
process the audio data. Call visualize to plot the static characteristic of the
compressor. Create a dsp.TimeScope to visualize the original and processed audio.

frameLength = 1024;

fileReader = dsp.AudioFileReader('RockDrums-44pl-stereo-1lsecs.mp3',
'SamplesPerFrame', frameLength);

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRC = compressor('SampleRate', fileReader.SampleRate);
visualize(dRC)

scope = dsp.TimeScope(
'SampleRate',fileReader.SampleRate,
'TimeSpan',1, .
'BufferLength',fileReader.SampleRate*4,
'YLimits',[-1,1],
'TimeSpanOverrunAction', 'Scroll’,
'ShowGrid',true,
'LayoutDimensions',[2,1],
"NumInputPorts',?2,
'Title', 'Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');

scope.ActiveDisplay = 2;

scope.YLimits = [-4,0];

scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a Ul to tune parameters of the compressor while
streaming.

parameterTuner(dRC)

3-11

3 System objects in Audio Toolbox

Audio Parameter Tuner: compressor [dRC] = |[=][=]
Cornp ratio n -
Threshold (dB) n
Knee width (dB) n-
Attack time (=) n -

R time (g) n -

Make-up gain (dE) n

In an audio stream loop:

1 Read in a frame of audio from the file.

2 Apply dynamic range compression.

3 Write the frame of audio to your audio device for listening.

4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the
effect.

while ~isDone(fileReader)
audioIn = fileReader();
[audioOut,g] = dRC(audioIn);
deviceWriter(audioOut);
scope([audioIn(:,1),audioOut(:,1)]1,q9(:,1));
drawnow limitrate % required to update parameter
end

3-12

parameterTuner

(4] o || =R
File Tools View Playback Help o

Q- B~ 4 HEEA E

=]

=
=
=
[
<

ain (dB)

5

Processing Offzet=10471 T=11.4474

As a best practice, release your objects once done.

release
release
release
release

deviceWriter)
fileReader)
dRC)

scope)

—_~ e~~~

3-13

3 System objects in Audio Toolbox

(4] o || =R
File Tools View Playback Help o

Q- B~ 4 HEEA E

=]

=
=
=
[
<

ain (dB)

5

Stopped Offzet=10.471 |T=11 4474

Tune Noise Gate Parameters
Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an

audioDeviceWriter to write audio to your sound card. Create a noiseGate to process
the audio data.

3-14

parameterTuner

frameLength = 1024;

fileReader = dsp.AudioFileReader('RockDrums-44pl-stereo-1lsecs.mp3',
'SamplesPerFrame', frameLength);

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRG = noiseGate('SampleRate', fileReader.SampleRate);

Call parameterTuner to open a Ul to tune parameters of the noiseGate while
streaming.

parameterTuner(dRG)

Audio Parameter Tuner: noiseGate [dRG] EI@
Threshold (dB) n

0.05

0.05

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range gating.
3 Write the frame of audio to your audio device for listening.

3-15

3 System objects in Audio Toolbox

3-16

While streaming, tune parameters of the dynamic range gate and listen to the effect.

while ~isDone(fileReader)

audioIn = fileReader();

audioOut = dRG(audioln);

deviceWriter(audioOut);

drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRG)

Tune Graphic EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create a graphicEQ to process
the audio data. Call visualize to plot the frequency response of the graphic equalizer.

frameLength = 1024;

fileReader = dsp.AudioFileReader('RockDrums-44pl-stereo-1llsecs.mp3',
'SamplesPerFrame', frameLength);

deviceWriter = audioDeviceWriter('SampleRate', fileReader.SampleRate);

equalizer = graphicEQ('SampleRate', fileReader.SampleRate,
'Gains',[0,10,-10,5,-5,2,-2,1,-1,0]);

visualize(equalizer)

Call parameterTuner to open a Ul to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

parameterTuner

while ~isDone(fileReader)
audioIn = fileReader();
audioOut = equalizer(audioln);
deviceWriter(audioOut);
drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

Tune Wavetable Synthesizer Parameters

Create a wavetableSynthesizer to generate a waveform. Create a dsp.TimeScope to
visualize the waveform. Create an audioDeviceWriter to write audio to your sound
card.

fs = 44.1e3;
wvSynth = wavetableSynthesizer('SampleRate',44.1e3);

scope = dsp.TimeScope(.
'SampleRate',wvSynth.SampleRate,
'TimeSpan',1, .
'YLimits',[-2,2],
'TimeSpanOverrunAction', 'Scroll"',
'ShowGrid',true);

deviceWriter = audioDeviceWriter('SampleRate',wvSynth.SampleRate);

Call parameterTuner to open a Ul to tune parameters of the wavetable synthesizer
while streaming.

parameterTuner(wvSynth)

3-17

3 System objects in Audio Toolbox

Audho Parameter Tuner: wavetableSynthesizer [wvSynth] EI@

Frequency (Hz) n
Amplitude (AL n
e) n

3-18

In an audio stream loop:

1 Call the wavetable synthesizer without arguments to output one frame of data.
2 Visualize the data using the time scope.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the wavetable synthesizer and listen to the effect.

duration = 15;
numIterations = round(wvSynth.SampleRate*duration/wvSynth.SamplesPerFrame);
for i = l:numlIterations
audioOut = wvSynth();
scope (audioOut)
deviceWriter(audioOut);
drawnow limitrate % required to update parameter
end

L

i 'Mﬂﬂ A

meterTuner
E3
-]
Crffzet=14 T=14 95885

$

|

ﬂ

i MHMWUUWHM HUW uMMWHH»WUUWMMUW

para
-+ -
File Tools View F'Ia],rhack Help
Q-G£ M X & | 63
i
—I—I—I—I—I—I—I—I—I—
Asa ice,
release(scope)
3

A
f u“""ﬂ“n | nnnn,mu " 4

|

i lUUUWlu"MUW' I lWUWJu“N \UUW

pppppp

audioPlugin object | compressor | expander | limiter | noiseGate |
octaveFilter | crossoverFilter | multibandParametericEQ | graphicEQ |
audioOscillator |wavetableSynthesizer

parameterTuner

Object to tune, specified as an object that inherits from audioPlugin or one of the
following Audio Toolbox objects:
* compressor

* expander

 limiter

* noiseGate

* octaveFilter

* crossoverFilter

* multibandParametricEQ
* graphicEQ

* audioOscillator

* wavetableSynthesizer

Output Arguments

H — Target figure
Figure object

Target figure, returned as a Figure object.

See Also
Audio Test Bench | audioPlugin

Introduced in R2019a

3-21

3 System objects in Audio Toolbox

gammatoneFilterBank

Gammatone filter bank

Description

gammatoneFilterBank decomposes a signal by passing it through a bank of gammatone
filters equally spaced on the ERB scale. Gammatone filter banks were designed to model
the human auditory system.

apex (wide and flexible) base (narrow and stiff)

basilar membrane 1

Magnitude (dB)

Frequency (kHz)

To model the human auditory system:

1 Create the gammatoneFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3-22

gammatoneFilterBank

Creation

Syntax

gammaFiltBank = gammatoneFilterBank

gammaFiltBank = gammatoneFilterBank(range)

gammaFiltBank = gammatoneFilterBank(range,numFilts)
gammaFiltBank = gammatoneFilterBank(range,numFilts, fs)
gammaFiltBank = gammatoneFilterBank(,Name,Value)
Description

gammaFiltBank = gammatoneFilterBank returns a gammatone filter bank. The

object filters data independently across each input channel over time.

gammaFiltBank = gammatoneFilterBank(range) sets the Range property to
range.

gammaFiltBank = gammatoneFilterBank(range,numFilts) sets the NumFilters
property to numFilts.

gammaFiltBank = gammatoneFilterBank(range,numFilts, fs) sets the
SampleRate property to fs.

gammaFiltBank = gammatoneFilterBank(,Name,Value) sets each property
Name to the specified Value. Unspecified properties have default values.

Example: gammaFiltBank =

gammatoneFilterBank([62.5,12e3], 'SampleRate',24e3) creates a gammatone
filter bank, gammaFiltBank, with bandpass filters placed between 62.5 Hz and 12 kHz.
gammaFiltBank operates at a sample rate of 24 kHz.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

3-23

3 System objects in Audio Toolbox

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FrequencyRange — Frequency range of filter bank (Hz)
[50 8000] (default) | two-element row vector of monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of
monotonically increasing values.

Tunable: No

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumFilters — Number of filters
32 (default) | positive integer scalar

Number of filters in the filter bank, specified as a positive integer scalar.

Tunable: No

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Data Types: single | double
Usage

Syntax

audioOut = gammaFiltBank(audioln)

3-24

gammatoneFilterBank

Description

audioOut = gammaFiltBank(audioIn) applies the gammatone filter bank on the
input and returns the filtered output.

Input Arguments

audioIn — Audio input to filter bank
scalar | vector | matrix

Audio input to the filter bank, specified as a scalar, vector, or matrix. If specified as a
matrix, the columns are treated as independent audio channels.

Data Types: single | double

Output Arguments

audioOut — Audio output from filter bank
scalar | vector | matrix | 3-D array

Audio output from the filter bank, returned as a scalar, vector, matrix, or 3-D array. The
shape of audioOut depends on the shape of audioIn and NumFilters. If audiolIn is an
M-by-N matrix, then audioQut is returned as an M-by-NumFilters-by-N array. If N is 1,
then audioQut is returned as a matrix.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)
Specific to gammatoneFilterBank
fvtool Visualize filter bank

freqz Compute frequency response
getCenterFrequencies Center frequencies of filters

3-25

3 System objects in Audio Toolbox

getBandwidths Get filter bandwidths
coeffs Get filter coefficients
info Get filter information

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Apply Gammatone Filterbank

Create a default gammatone filter bank for a 16 kHz sample rate.

fs = 16e3;
gammaFiltBank

gammatoneFilterBank('SampleRate',fs)

gammaFiltBank
gammatoneFilterBank with properties:
FrequencyRange: [50 8000]

NumFilters: 32
SampleRate: 16000

Use fvtool to visualize the response of the filter bank.

fvtool (gammaFiltBank)

3-26

gammatoneFilterBank

Magnitude Response (dB)
® T Ix) I | | ' |
o (l @/
Wl
-40 '#Ir‘ ,f"%}:‘f,‘ e
s
,.'g@_%*‘ s

Magnitude (dB)

-180

0 1 2 3 4 5 6 7
Frequency (kHz)

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view
the spectrum of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3, ...
'PlotAsTwoSidedSpectrum', false, ...
'FrequencyScale', 'log’', ...
'SpectralAverages',100);

for i = 1:5000
X = randn(256,1);
y = gammaFiltBank(x);
sa(y);

end

3-27

3 System objects in Audio Toolbox

= o || B || E8
File Tools View Playback Help k!

s -| & -|]| & | [&l 1) | 5

Processing REVW=7.81 Hz |Sample rate=16kHz T=79.65

Analysis and Synthesis

The gammatoneFilterBank enables good reconstruction of a signal after analyzing or
modifying its subbands.

Read in an audio file and listen to its contents.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
sound(audioIn, fs)

Create a default gammatoneFilterBank. The default frequency range of the filter bank
is 50 to 8000 Hz. Frequencies outside of this range are attenuated in the reconstructed
signal.

3-28

gammatoneFilterBank

gammaFiltBank

gammatoneFilterBank('SampleRate', fs)

gammaFiltBank
gammatoneFilterBank with properties:

FrequencyRange: [50 8000]
NumFilters: 32
SampleRate: 44100

Pass the audio signal through the gammatone filter bank. The output is 32 channels,
where the number of channels is set by the NumFilters property of the
gammatoneFilterBank.

audioQut = gammaFiltBank(audioIn);

[N, numChannels] = size(audioOut)

N:

685056

numChannels =

32

To reconstruct the original signal, sum the channels. Listen to the result.

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal, fs)

The gammatone filter bank introduced various group delays for the output channels,
which results in poor reconstruction. To compensate for the group delay, remove the
beginning delay from the individual channels and zero-pad the ends of the channels. Use
info to get the group delays. Listen to the group delay-compensated reconstruction.

infoStruct
groupDelay

info(gammaFiltBank) ;
round(infoStruct.GroupDelays); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),gammaFiltBank.NumFilters)];

3-29

3 System objects in Audio Toolbox

3-30

for i = 1l:gammaFiltBank.NumFilters
audioQut(:,i) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i);
end

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal, fs)

Create Gammatone Spectrogram

Read in an audio signal and convert it to mono for easy visualization.

[audio, fs] = audioread('WaveGuidelLoopOne-24-96-stereo-10secs.aif');
audio = mean(audio,2);

Create a gammatoneFilterBank with 64 filters that span the range 62.5 to 20,000 Hz.
Pass the audio signal through the filter bank.

gammaFiltBank = gammatoneFilterBank('SampleRate',fs,
"‘NumFilters',64, ...
'FrequencyRange', [62.5,20e3]);

audioQut = gammaFiltBank(audio);

Calculate the energy-per-band using 50 ms windows with 25 ms overlap. Use
dsp.AsyncBuffer to divide the signals into overlapped windows. Use dsp.SignalSink
to log the RMS value of each window for each channel.

samplesPerFrame = round(0.05*fs);
samplesOverlap = round(0.025*fs);

buff = dsp.AsyncBuffer(numel(audio));
write(buff,audioOut.”2);

sink = dsp.SignalSink;

while buff.NumUnreadSamples > 0
currentFrame = read(buff,samplesPerFrame,samplesOverlap);
sink(mean(currentFrame, 1))

end

Convert the energy values to dB. Plot the energy-per-band over time.

gammatoneFilterBank

D = 20*1ogl0(sink.Buffer');

timeVector = ((samplesPerFrame-samplesOverlap)/fs)*(0:size(D,2)-1);
cf = getCenterFrequencies(gammaFiltBank)./1le3;

surf(timeVector,cf,D, 'EdgeColor', 'none')
axis([timeVector(1l) timeVector(end) cf(1l) cf(end)])
view([0 90])

caxis([-150,-601])

colorbar

xlabel('Time (s)')

ylabel('Frequency (kHz)")

3-31

3 System objects in Audio Toolbox

20 =60
18 -7
16 80
14
— =80
[
< 12
b =100
&
c 10
[i¥]
g_ =110
o 8
Ll
=120
G
=130
4
2 =140
=150

Algorithms

A gammatone filter bank is often used as the front end of a cochlea simulation, which
transforms complex sounds into a multichannel activity pattern like that observed in the
auditory nerve.[2] The gammatoneFilterBank follows the algorithm described in [1]
and first proposed by [2]. The design of the gammatone filter bank can be described in
two parts: the filter shape (gammatone) and the frequency scale. The equivalent
rectangular bandwidth (ERB) scale defines the relative spacing and bandwidth of the
gammatone filters. The derivation of the ERB scale also provides an estimate of the
auditory filter response which closely resembles the gammatone filter.

3-32

gammatoneFilterBank

Magnitude (dB)

80

~100

120 —

140 —

4
Frequency (kHz)

Frequency Scale

The ERB scale was determined using the notched-noise masking method. This method
involves a listening test wherein notched noise is centered on a tone. The power of the
tone is tuned, and the audible threshold (the power required for the tone to be heard) is
recorded. The experiment is repeated for different notch widths and center frequencies.

—— audible threshold

A

The notched-noise method assumes the audible threshold corresponds to a constant
signal-to-masker ratio at the output of the theoretical auditory filter. That is, the ratio of
the power of the f, tone and the shaded area is constant. Therefore, the relationship
between the audible threshold and 2Af (the notch bandwidth) is linearly related to the
relationship between the noise passed through the filter and 2Af.

/ theoretical auditory filter response

noise

fe

3-33

3 System objects in Audio Toolbox

Audible Threshold

Noise passed through filter

3-34

=

Noise passed through filter

Af Af

The derivative of the function relating Af to the noise passed through the filter estimates
the auditory filter shape. Because Af has an inverse relationship with the noise power
passed through the filter, the derivative of the function must be multiplied by -1. The
resulting auditory filter shape is usually approximated as a roex filter.

Typical Auditory Filter Shape

=

Frequency Response

Af] fc

The equivalent rectangular bandwidth of the auditory filter is defined as the width of a
rectangular filter required to pass the same noise power as the auditory filter.

gammatoneFilterBank

m
A
m

r
L 4

Frequency Response

fe

[4] defines ERB as a function of center frequency for young listeners with normal hearing
and a moderate noise level:

ERB = 24.7(0.00437f; + 1)

The ERB scale (ERBs) is an extension of the relationship between ERB and center
frequency, derived by integrating the reciprocal of the ERB function:

ERBs = 21.4log1((0.00437f + 1)
To design a gammatone filter bank, [2] suggests distributing the center frequencies of the
filters in proportion to their bandwidth. To accomplish this, gammatoneFilterBank
defines the center frequencies as linearly spaced on the ERB scale, covering the specified

frequency range with the desired number of filters. You can specify the frequency range
and desired number of filters using the FrequencyRange and NumFilters properties.

Gammatone Filter

The gammatone filter was introduced in [3]. The continuous impulse response is:

g(t) = at" ~ le=2mbtoos(2mf ot + ¢)

3-35

3 System objects in Audio Toolbox

3-36

where

* a -- amplitude factor

* t--time in seconds

* n — filter order (set to four to model human hearing)

* f.-- center frequency

* b -- bandwidth, set to 1.019*erb2hz(f.).

* ¢ -- phase factor

The gammatone filter is similar to the roex filter derived from the notched-noise

experiment. gammatoneFilterBank implements the digital filter as a cascade of four
second-order sections, as described in [1].

References

[1] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdworth Auditory
Filter Bank." Apple Computer Technical Report 35, 1993.

[2] Patterson, R.d., K. Robinson, J. Holdsworth, D. Mckeown, C. Zhang, and M. Allerhand.
"Complex Sounds and Auditory Images." Auditory Physiology and Perception.
1992, pp. 429-446.

[3] Aertsen, A. M. H.], and P. I. M. Johannesma. "Spectro-temporal Receptive Fields of
Auditory Neurons in the Grassfrog." Biological Cybernetics. Vol. 38, Issue 4, 1980,
pp. 223-234.

[4] Glasberg, Brian R., and Brian CJ] Moore. "Derivation of Auditory Filter Shapes from
Notched-Noise Data." Hearing Research. Vol. 47. Issue 1-2, 1990, pp. 103 -138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

gammatoneFilterBank

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

crossoverFilter | octaveFilterBank

Introduced in R2019a

3-37

3 System objects in Audio Toolbox

3-38

coeffs

Get filter coefficients

Syntax

[B,A] = coeffs(obj)

Description

[B,A] = coeffs(obj) returns the coefficients of the filters created by obj.

Examples

Get graphicEQ Coefficients
Cascade Structure

Create a graphicEQ and then call coeffs to get its coefficients. The coefficients are
returned as second-order sections. The dimensions of B are 3-by-(M * EQOrder / 2), where
M is the number of bandpass equalizers. The dimensions of A are 2-by-(M * EQOrder / 2).
The leading unity coefficient is not returned.

fs = 44.1e3;

X = 0.1*randn(fs*5,1);

equalizer = graphicEQ('SampleRate',fs, ...
'Gains',[-10,-10,10,10,-10,-10,10,10,-10,-10],
"EQOrder',2);

[B,A] = coeffs(equalizer);

Compare using filter with coefficients B and A and the output of graphicEQ. For
simplicity, compare output channel five only.

channelToCompare = 5;
y = X;

coeffs

for section = l:equalizer.EQOrder/2
for i = 1l:numel(equalizer.Gains)
y = filter(B(:,i*section),[1;A(:,i*section)],y);
end
end
audioOut filter = y;

audioOut = equalizer(x);

subplot(2,1,1)
plot(abs(fft(audioOut)))
title('graphicEQ")
ylabel('Magnitude Response')

subplot(2,1,2)
plot(abs(fft(audioOut filter)))
title('Filter function')
xlabel('Bin")

ylabel('Magnitude Response')

3-39

3 System objects in Audio Toolbox

3-40

Magnitude Response

Magnitude Response

graphicEQ

1] 0.5 1 1.3 2 2.4

Filter function

Bin % 10°

Get gammatoneFilterBank Coefficients

Create the default gammatoneFilterBank, and then call coeffs to get its coefficients.
Each gammatone filter is an eighth-order IIR filter composed of a cascade of four second-
order sections. The size of B is 4-by-3-by- NumFilters. The size of A is 4-by-2-by-
NumFilters.

[audioIn, fs] = audioread('Counting-16-44pl-mono-15secs.wav');
gammaFiltBank = gammatoneFilterBank('SampleRate',fs);

[B,A] = coeffs(gammaFiltBank);

coeffs

Compare using filter with coefficients B and A and the output of gammaFiltBank. For
simplicity, compare output channel eight only.

channelToCompare = 8;
= filter(B(1,:,channelToCompare),[1,A(1,:,channelToCompare)],audioln);
y2 = filter(B(2,:,channelToCompare),[1,A(2,:,channelToCompare)],yl);
= filter(B(3,:,channelToCompare),[1,A(3,:,channelToCompare)],y2);
audioOut filter = filter(B(4,:,channelToCompare),[1,A(4,:,channelToCompare)],y3);

audioOut = gammaFiltBank(audioIn);
t = (0:(size(audioOut,1)-1))'/fs;

subplot(2,1,1)
plot(t,audioOut(:,channelToCompare))
title('Gammatone Filter Bank')
ylabel('Amplitude")

subplot(2,1,2)
plot(t,audioOut filter)
title('Filter Function')
xlabel('Time (s)')
ylabel('Amplitude")

3-41

3 System objects in Audio Toolbox

3-42

04 Gammatone Filter Bank

Amplitude
-
¥
R

02 5
_04 i i i i i i i
0 2 4 G B 10 12 14 16
Filter Function
04 T T T T T T T
n2r b

Amplitude
L=

R

10 12 14 16

=
i
T
i

=

.
=
[
o
G}_
e -

Time (s)

Get octaveFilterBank Coefficients

Create the default octaveFilterBank, and then call coeffs to get its coefficients. The
coefficients are returned as fourth-order sections. The dimensions of B and A are T-by-5-
by-M , where T is the number of sections and M is the number of filters.

[audioIn,fs] = audioread('Counting-16-44pl-mono-15secs.wav');
octFiltBank = octaveFilterBank('SampleRate',fs);

[B,A] = coeffs(octFiltBank);

coeffs

Compare using filter with coefficients B and A and the output of octaveFilterBank.
For simplicity, compare output channel eight only.

channelToCompare = 5;
yl = filter(B(1, :,channelToCompare),A(1l,:,channelToCompare),audioln);
audioOut filter = y1;

audioOut = octFiltBank(audioIn);
subplot(2,1,1)
plot(audioOut(:,channelToCompare))
title('Octave Filter Bank')
subplot(2,1,2)

plot(audioOut_ filter)
title('Filter function')

3-43

3 System objects in Audio Toolbox

Octave Filter Bank

1 T T T T
051 -
D -
'DE 1 1
0 1 2 3 4 5 G 7
«10°
1 Filter function
0.5 B
D -
'DE 1 1
0 1 2 3 4 5 <] 7

Input Arguments

obj — Object to get filter coefficients from
gammatoneFilterBank | octaveFilterBank | graphicEQ

Object to get filter coefficients from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

3-44

coeffs

Output Arguments

B — Numerator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.

Data Types: single | double

A — Denominator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.

Data Types: single | double

See Also

gammatoneFilterBank | graphicEQ | octaveFilterBank

Introduced in R2019a

3-45

3 System objects in Audio Toolbox

3-46

freqz

Compute frequency response

Syntax

[H,f] = fregz(obj)

[H,f] = freqz(obj,ind)

[H,f] = freqz(___ ,Name,Value)
freqz(_)

Description

[H,f] = freqz(obj) returns a matrix of complex frequency responses for each filter
designed by obj.

[H,f] = freqz(obj,ind) returns the frequency response of filters with indices
corresponding to the elements in vector ind.

[H,f] = freqz(,Name,Value) specifies options using one or more Name, Value
pair arguments.

freqz() with no output arguments plots the frequency response of the filter bank.

Examples

Frequency Response of gammatoneFilterBank

Create a gammatoneFilterBank object. Call freqz to get the complex frequency
response, H, of the filter bank and a vector of frequencies, f, at which the response is
calculated. Plot the magnitude frequency response of the filter bank.

gammaFiltBank = gammatoneFilterBank;
[H,f] = freqz(gammaFiltBank);

freqz

plot(f,abs(H))

xlabel('Frequency (Hz)"')

1.2

L.'n) ;u ?.\

ﬂ'

1000 2000 3000 4000 5000 6000
Frequency (Hz)

000 8000

To get the frequency response of a subset of filters in the filter bank, specify the second
argument as a row vector of indices between one and the number of filters in the filter
bank. Get the frequency response of the 10th filter in the filter bank and plot the
magnitude frequency response

[H,f] = freqz(gammaFiltBank,10);

plot(f,abs(H))
xlabel('Frequency (Hz)")

3-47

3 System objects in Audio Toolbox

0.9r 7

0.8r1 7

0.3 7

0.2 7

o1f | | .

I*- i i i i i i i
0
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 128-point
FFT. Plot the magnitude frequency response.

[H,f] = freqz(gammaFiltBank, 'NFFT',128);

plot(f,abs(H))
xlabel('Frequency (Hz)"')

3-48

freqz

’
09| ‘
0.8 ‘ [

0.7

0.6

0.5 |

0.4

! i

o1 pi AL AL) A/
WAL AN A

0 = - e i
0 1000 2000 3000 4000 5000 6000 7000 8OOO
Frequency (Hz)

To visualize the magnitude frequency response only, call freqz without any output
arguments. Plot the magnitude frequency response, in dB, of filters 20, 21, and 22 using a
1024-point DFT.

freqz(gammaFiltBank, [20,21,22], 'NFFT',1024)

3-49

3 System objects in Audio Toolbox

40

60

Magnitude (dB)

-100

- -

. i_
]
_1 ZD 1 1 i 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8OOO
Frequency (Hz)

Frequency Response of octaveFilterBank

Create an octaveFilterBank object. Call freqz to get the complex frequency
response, H, of the filter bank and a vector of frequencies, f, at which the response is
calculated. Plot the magnitude frequency response in dB.

octFiltBank = octaveFilterBank;
[H,f] = freqz(octFiltBank);

xlabel('Frequency (Hz)

plot(f,20*1ogl0(abs(H))
ylabel('Magnitude (dB)'

)
)
)

3-50

freqz

Magnitude (dB)

set(gca, 'XScale', "log")

axis([10 octFiltBank.SampleRate/2 -100 2])

1 T ,»a\ - . PR *l'"‘l-x o)]
/) ,;Kx\ . . R_\ ™~ /)ﬁ?x"' ~

_1 D - "’fﬁf K\H -, H"\-\. yﬁ:’j’ ../ : S \-\‘. ' -
,-*’f# ~ = =P . \\

- P . RN

_ZD .-'"-'f - g }H"‘"—a .-""'AH"" Ffi . h\-. 5 I|

L T TS . A

a0 s S . A

- ; .-""'P-FFF' ---.’-’___.-"' f R"\-\. H e - ,,_ II|II|

-40r P h N\

"'.-.-'-' "'-f-’____.-'ﬁ e "h-,___ ‘N"-'u.

=50 ;f_____,f 8 x\. ',II:

S0 ™\ Iﬁ

1-'_3'.

7ot HI'T

|

B0 I 1

_QD - i

-100 e —
10" 102 10°? 10*

Frequency (Hz)

To get the frequency response of a subset of filters in the filter bank, specify the second
argument as a row vector of indices between one and the number of filters in the filter
bank. Get the frequency response of the 5th filter in the filter bank and plot the
magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,5);
plot(f,20*loglO(abs(H)))

xlabel('Frequency (Hz)")
ylabel('Magnitude (dB)"')

3-51

3 System objects in Audio Toolbox

Magnitude (dB)

3-52

-100 e e e

set(gca, 'XScale', "log")
axis([10 octFiltBank.SampleRate/2 -100 2])

10/ 102 103 10*
Frequency (Hz)

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-
point FFT. Plot the magnitude frequency response in dB.

[H,f] = freqz(octFiltBank, 'NFFT',8192);

xlabel('Frequency (H)
ylabel('Magnitude (dB)"')
set(gca, 'XScale', "log")
axis([10 octFiltBank.SampleRate/2 -100 2])

plot(f,20*logl0(abs(H)))
z)'

Magnitude (dB)

-100 —_— _
107 102

10° 104
Frequency (Hz)

To visualize the magnitude frequency response only, call freqz without any output

freqz

arguments. Plot the magnitude frequency response, in dB, of filters 4, 5, and 6 using a

1024-point DFT.

freqz(octFiltBank, [4,5,6], 'NFFT',1024)

3-53

3 System objects in Audio Toolbox

Magnitude (dB)

3-54

—1'}'} i i i i
0 0.5 1 1.5 2 2.5

Frequency (Hz) x10*

Input Arguments

obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of
gammatoneFilterBank or octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:N (default) | row vector of integers with values in the range [1, N]

freqz

Indices of filters to calculate frequency responses from, specified as a row vector of

integers with values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the

argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'NFFT', 2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 |
uint32 | uint64

Output Arguments

H — Complex frequency response of each filter
matrix

Complex frequency response of each filter, returned as an M-by-N matrix. M is the
number of DFT bins, specified by NFFT. N is the number of filters, which is either

length(ind) or, if ind is not specified, the total number of filters in the filter bank.

Data Types: double

f — Frequencies at which response is computed (Hz)
column vector

Frequencies at which the response is computed in Hz, returned as a column vector.

Data Types: double

See Also

fvtool | gammatoneFilterBank | octaveFilterBank

3-55

3 System objects in Audio Toolbox

Introduced in R2019a

3-56

fvtool

fvtool

Visualize filter bank

Syntax
fvtool(obj)

fvtool(obj,ind)
fvtool(_ ,Name,Value)

Description

fvtool(obj) visualizes the filters in the filter bank using the Filter Visualization Tool
(FVTool).

fvtool(obj,ind) visualizes the filters corresponding to the elements in the vector ind.

fvtool(,Name,Value) specifies options using one or more Name, Value pair
arguments.
Examples

View octaveFilterBank in FVTool

Create an octaveFilterBank object. Call fvtool to visualize the filter bank.

octFiltBank = octaveFilterBank;
fvtool(octFiltBank);

3-57

3 System objects in Audio Toolbox

Magnitude Response (dB)
) — i T — S -
— _ HH_& \
T — ..H\x \"
) S~
z _ . \'x
&) T — II
= —— H
= T W
= T -

= — \I.I|
[l e S S |
— —

— ‘ N
50 e e W
EHH"'H-.. et !
e S
_?D ~ "‘\ \'\ |III

\

k!
B0 F \".J

1] 5 10 15 20

Frequency (kHz)

To visualize a subset of filters in the filter bank, specify the second argument as a row
vector of indices between one and the number of filters in the filter bank. If not specified,
fvtool visualizes 1 to N filters of the filter bank, where N is the smallest of
octFiltBank.NumFilters and 64. Visualize the ninth filter.

fvtool(octFiltBank,9);

3-58

fvtool

Magnitude (dB)

Magnitude Response (dB)

0 5 10
Frequency (kHz)

15

20

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-

point FFT.

fvtool(octFiltBank, 'NFFT',8192);

3-59

3 System objects in Audio Toolbox

Magnitude Response (dB)
- ______\--\-) T — — - -, -)
— _ HH_& \
T — ..H\x \"
) S~
i) _ . \'x
&) T — II
= —— H
= T i
gn — \I.I|
] T— e h 1!
_— S |
— ﬂ \
60 - i S N
EHH"'H-.. et !
N
_?D ~ "‘\ \'\ |III
\
k!
B0 F \".J
1] 5 10 15 20

Frequency (kHz)

View gammatoneFilterBank in FVTool

Create a gammatoneFilterBank object. Call fvtool to visualize the filter bank.

gammaFiltBank = gammatoneFilterBank;
fvtool(gammaFiltBank) ;

3-60

fvtool

Magnitude (dB)

3

2

2

Magnitude Response (dB)

r:I; Y

e
X

0 e

0 1 2 3 4 5 6 7
Frequency (kHz)

To visualize a subset of filters in the filter bank, specify the second argument as a row
vector of indices between one and the number of filters in the filter bank. If not specified,

fvtool visualizes 1 to N filters of the filter bank, where N is the smallest of

gammaFiltBank.NumFilters and 64. Visualize the ninth filter.

fvtool(gammaFiltBank,9);

3-61

3 System objects in Audio Toolbox

Magnitude Response (dB)
D [Irll T T T T T T T]
II |
i1
[
[
II II
| |
|I III
. 50 -
g |/
z \
= \
= \
@ N\
= 00} S -
_1 ED i i i i i i i i]
0 1 2 3 4 5 6

Frequency (kHz)

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-
point FFT.

fvtool(gammaFiltBank, 'NFFT',8192);

3-62

fvtool

Magnitude (dB)

Magnitude Response (dB)

i ' * O \ < -

i
N
e _

0 1 2 3 4 5 6 7
Frequency (kHz)

Input Arguments

obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of
gammatoneFilterBank or octaveFilterBank.

ind — Indices of filters to calculate frequency responses from

1:max (N, 64) (default) | row vector of integers with values in the range [1, N]

3-63

3 System objects in Audio Toolbox

3-64

Indices of filters to calculate frequency responses from, specified as a row vector of
integers with values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also

gammatoneFilterBank | octaveFilterBank

Introduced in R2019a

getBandedgeFrequencies

getBandedgeFrequencies

Get filter bandedges

Syntax

bandEdges = getBandedgeFrequencies(obj)
[bandEdges, centerFrequencies] = getBandedgeFrequencies(obj)

Description

bandEdges = getBandedgeFrequencies(obj) returns the bandedge frequencies of
the filters designed by obj. If there are M filters, then there are M center frequencies
and M+1 band edge frequencies.

[bandEdges, centerFrequencies] = getBandedgeFrequencies(obj) returns the
center frequencies of the filters designed by obj.

Examples

Get Bandedge Frequencies
Create a default octaveFilterBank object.
octFiltBank = octaveFilterBank;

Call getBandedgeFrequencies to return a vector of bandedge frequencies.
bE = getBandedgeFrequencies(octFiltBank)

bE = 1Ix11
104 x

0.0022 0.0045 0.0089 0.0178 0.0355 0.0708 0.1413 0.2818

3-65

3 System objects in Audio Toolbox

Call freqz to get the frequency response of the filter bank. Plot the magnitude frequency
response. Use the bandedge frequencies to label the frequency axis.

[H,f] = freqz(octFiltBank);

semilogx(f,abs(H))

xticks(round(bE))

xlabel('Frequency (Hz)"')

ylabel('Magnitude')

grid on

h = gcf;

set(h, 'Position', [h.Position(1l) h.Position(2) h.Position(3)*2 h.Position(4)])

Magnitude
j=] j=]

w (=1}

T T

e =
w R
T T

=)
™
T

=
.
T

- P m— e S e P e o I T R R A
22 45 89 178 355 708 1413 2818 5623 11178 22050
Frequency (Hz)

=}

Input Arguments

obj — Object to get filter information from
octaveFilterBank object

Object to get filter information from, specified as an object of octaveFilterBank.

Output Arguments

bandEdges — Bandedges of filters (Hz)
row vector

3-66

getBandedgeFrequencies

Bandedges of filters designed by obj in Hz, returned as a row vector.

Data Types: double | single

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.

Data Types: double | single

See Also

octaveFilterBank

Introduced in R2019a

3-67

3 System objects in Audio Toolbox

getCenterFrequencies

Center frequencies of filters

Syntax

cf = getCenterFrequencies(obj)

Description

cf = getCenterFrequencies(obj) returns the center frequencies of the filters
created by obj, in Hz.

Examples

Center Frequencies of gammatoneFilterBank

Create a gammatoneFilterBank and get the center frequencies of the filters in the filter
bank.

gammaFiltBank = gammatoneFilterBank;

cf

getCenterFrequencies(gammaFiltBank)

cf =
1.0e+03 *
Columns 1 through 7
0.0500 0.0822 0.1180 0.1581 0.2027 0.2525 0.3080
Columns 8 through 14

0.3700 0.4390 0.5161 0.6020 0.6979 0.8048 0.9241

3-68

getCenterFrequencies

Columns 15 through 21
1.0571 1.2054 1.3709 1.5555 1.7613 1.9909 2.2470
Columns 22 through 28
2.5327 2.8513 3.2066 3.6030 4.0451 4.5381 5.0881
Columns 29 through 32
5.7015 6.3857 7.1488 8.0000
Center frequencies of a gammatone filter bank are spaced evenly on the ERB scale.

Convert the center frequencies vector to the ERB scale and calculate the differences
between center frequencies.

diff(hz2erb(cf))

ans =

Columns 1 through 7

1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116
Columns 8 through 14

1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116
Columns 15 through 21

1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116
Columns 22 through 28

1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116
Columns 29 through 31

1.0116 1.0116 1.0116

3-69

3 System objects in Audio Toolbox

3-70

Center Frequencies of octaveFilterBank

Create an octaveFilterBank and get the center frequencies of the filters in the filter
bank.

octFiltBank = octaveFilterBank;

cf = getCenterFrequencies(octFiltBank)

cf =
1.0e+04 *
Columns 1 through 7
0.0032 0.0063 0.0126 0.0251 0.0501 0.1000 0.1995
Columns 8 through 10
0.3981 0.7943 1.5729
Center frequencies of an octave filter bank are spaced evenly on a logarithmic scale.

Convert the center frequencies vector to the log scale and calculate the differences
between center frequencies.

diff(logl0o(cf))

ans =
Columns 1 through 7
0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000
Columns 8 through 9

0.3000 0.2967

getCenterFrequencies

Get Center Frequencies of Octave Filter Bank Used in splMeter

Create an octave bandwidth splMeter and get the center frequencies of the octave filter
bank. Round the center frequencies to two significant digits for display purposes.

SPL = splMeter('SampleRate', 44100, 'Bandwidth','l octave');
cf = getCenterFrequencies(SPL);
round(cf,2, 'significant"')

ans =
Columns 1 through 6
32 63 130 250 500 1000
Columns 7 through 10

2000 4000 7900 16000

Input Arguments

obj — Object to get filter bank center frequencies from
gammatoneFilterBank | octaveFilterBank | splMeter

Object to get filter bank center frequencies from, specified as an object of
gammatoneFilterBank, octaveFilterBank, or splMeter.

Output Arguments

cf — Filter bank center frequencies (Hz)
scalar | vector

Filter bank center frequencies in Hz, returned a scalar or vector.

See Also

gammatoneFilterBank | octaveFilterBank | splMeter

3-71

3 System objects in Audio Toolbox

Introduced in R2019a

3-72

getBandwidths

getBandwidths

Get filter bandwidths

Syntax

bw = getBandwidths(obj)

Description

bw = getBandwidths(obj) returns the bandwidths of the filters created by obj, in Hz.

Examples

Get Filter Bandwidths of gammatoneFilterBank

Create a default gammatoneFilterBank. Call getBandwidths to get the bandwidths of

the filters, in Hz.

gammaFiltBank = gammatoneFilterBank;

bw = getBandwidths(gammaFiltBank)

bw =

Columns 1 through 7

30.6688 34.2071 38.1536

Columns 8 through 14

65.8614 73.4598 81.9349

Columns 15 through 21

59.0489

126.8078

3-73

3 System objects in Audio Toolbox

3-74

141.4376 157.7554 175.9557 196.2558 218.8979 244.1523 272.3203
Columns 22 through 28
303.7380 338.7804 377.8657 421.4603 470.0844 524.3183 584.8091
Columns 29 through 32

652.2789 727.5326 811.4685 905.0880

Input Arguments

obj — Object to get filter bandwidth from
gammatoneFilterBank

Object to get filter bandwidth from, specified as an object of gammatoneFilterBank.

Output Arguments

bw — Filter bandwidths (Hz)
scalar | vector

Filter bandwidths in Hz, returned a scalar or vector.

See Also

gammatoneFilterBank

Introduced in R2019a

getGroupDelays

getGroupDelays

Get group delays

Syntax

groupDelays = getGroupDelays(obj)
[groupDelays, centerFrequencies] = getGroupDelays(obj)

Description

groupDelays = getGroupDelays(obj) returns the group delay of each filter at its
center frequency.

[groupDelays, centerFrequencies] = getGroupDelays(obj) returns the center
frequency of each filter.

Examples

Get Group Delays

Create a default octaveFilterBank object. Call getGroupDelays to get the group
delay of each octave filter at its center frequency.

octFiltBank = octaveFilterBank;
[gd,cf] = getGroupDelays(octFiltBank);

Plot the group delay as a function of filter center frequency.

loglog(cf,qgd, 'k-',cf,gd, 'bo")
grid on

xlabel('Frequency (Hz)"')
ylabel('Delay (samples)')
xticks(round(cf))
yticks(round(fliplr(gd)))

3-75

3 System objects in Audio Toolbox

630 F
316 F
158 |
79 b
40
20 b
10 F

Delay {(samples)

Pl TS B S | PR M i I | S N

32 B3 126 251 501 1000 1995 3981 7943 15729
Frequency (Hz)

Input Arguments

obj — Object to get group delays from
octaveFilterBank

Object to get group delays from, specified as an object of octaveFilterBank.

Output Arguments

groupDelays — Group delays (samples)
row vector

3-76

getGroupDelays

Group delay of each filter at its center frequency in samples, returned as a row vector.

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.

Data Types: double | single

See Also

octaveFilterBank

Introduced in R2019a

3-77

3 System objects in Audio Toolbox

octaveFilterBank

Octave and fractional-octave filter bank

Description

octaveFilterBank decomposes a signal into octave or fractional-octave subbands. An
octave-band is a frequency band where the highest frequency is twice the lowest
frequency. Octave-band and fractional octave-band filters are commonly used to mimic
how humans perceive loudness.

Magnitude (dB)

&
=]

R .
10 100 1000 10000
Frequency (Hz)

To apply a bank of octave-band or fractional octave-band filters:

1 Create the octaveFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB

~—

3-78

octaveFilterBank

Creation

Syntax

octFiltBank = octaveFilterBank

octFiltBank = octaveFilterBank(bandwidth)
octFiltBank = octaveFilterBank(bandwidth, fs)
octFiltBank = octaveFilterBank(__ ,Name,Value)
Description

octFiltBank = octaveFilterBank returns an octave filter bank. The objects filters
data independently across each input channel over time.

octFiltBank = octaveFilterBank(bandwidth) sets the Bandwidth property to
bandwidth.

octFiltBank = octaveFilterBank(bandwidth, fs) sets the SampleRate property
to fs.
octFiltBank = octaveFilterBank(,Name, Value) sets each property Name to

the specified Value. Unspecified properties have default values.

Example: octFiltBank = octaveFilterBank('1l/2 octave', 'FrequencyRange’,
[62.5,12000]) creates a ¥2 octave-band filter bank, octFiltBank, with bandpass
filters placed between 62.5 Hz and 12,000 Hz.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using

System Objects (MATLAB).

3-79

3 System objects in Audio Toolbox

3-80

Bandwidth — Filter bandwidth (octave)
'l octave' (default) | '2/3 octave'| '1l/2 octave'| '1l/3 octave']| 'l/6
octave'| '1/12 octave'| '1/24 octave'| '1/48 octave'

Filter bandwidth in octaves, specified as 'l octave', '2/3 octave', '1/2 octave',
'1/3 octave', '1/6 octave', '1/12 octave', '1/24 octave',or '1/48
octave'.

Tunable: No

Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes

Data Types: single | double

FrequencyRange — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing
values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. The filter bank center frequencies are placed according
to the Bandwidth, RefererenceFrequency, and OctaveRatioBase properties. Filters
that have a center frequency outside FrequencyRange are ignored.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ReferenceFrequency — Reference frequency (Hz)
1000 (default) | positive integer scalar

Reference frequency of the filter bank in Hz, specified as a positive integer scalar. The
reference frequency defines one of the center frequencies. All other center frequencies
are set relative to the reference frequency.

Tunable: No

octaveFilterBank

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FilterOrder — Order of octave filters
2 (default) | even integer

Order of the octave filters, specified as an even integer. The filter order applies to each
individual filter in the filter bank.

Tunable: No

Data Types: single | double | int8 | int1l6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OctaveRatioBase — Octave ratio base
10 (default) | 2

Octave ratio base, specified as 10 or 2. The octave ratio base determines the distribution
of the center frequencies of the octave filters. The ANSI S1.11 standard recommends
base 10. Base 2 is popular for music applications. Base 2 defines an octave as a factor of
2, and base 10 defines an octave as a factor of 1093,

Tunable: No

Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Syntax

audioOut = octFiltBank(audioIn)

Description

audioOut = octFiltBank(audioIn) applies the octave filter bank on the input and
returns the filtered output.

3-81

3 System objects in Audio Toolbox

Input Arguments

audioIn — Audio input to octave filter bank
scalar | vector | matrix

Audio input to the octave filter bank, specified as a scalar, vector, or matrix. If specified as
a matrix, the columns are treated as independent audio channels.

Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter bank
matrix | 3-D array

Audio output from octave filter bank, returned as a scalar, vector, matrix, or 3-D array.
The shape of audioOut depends on the shape of audioIn and the number of filters in
the filter bank. If M is the number of filters, and audioIn is an L-by-N matrix, then
audioOut is returned as an L-by-M-by-N array. If N is 1, then audioQOut is a matrix.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilterBank

coeffs Get filter coefficients

freqz Compute frequency response
fvtool Visualize filter bank
getBandedgeFrequencies Get filter bandedges
getCenterFrequencies Center frequencies of filters
getGroupDelays Get group delays

info Get filter information

3-82

octaveFilterBank

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Apply Octave Filter Bank

Create a 1/3-octave filter bank for a signal sampled at 48 kHz. Set the frequency range to
[18 22000] Hz.

octFilBank = octaveFilterBank('1l/3 octave',48000, ...
'FrequencyRange', [18 22000]);

Use fvtool to visualize the response of the filter bank. To get a high-resolution view on
the lower frequencies, set the scale of the x-axis to Log and NFFT to 2°16. Add a legend
indicating the filter bank center frequencies.

fvtool(octFilBank, 'NFFT',2716);
set(gca, 'XScale', '"log")
axis([.01 24 -20 11)

fc = getCenterFrequencies(octFilBank);
fcc = cell(size(fc));
for ii = find(fc<1000)
fcc{ii} = sprintf('%.0f"',round(fc(ii),2, 'significant'));
end
for ii = find(fc>=1000)
fcc{ii} = sprintf('%.1fk',fc(ii)/1000);
end
legend(fcc, 'Location', 'eastoutside')

3-83

3 System objects in Audio Toolbox

Magnitude Response (dB)

0 ' ' ' 20

25

2 32

40

4 50

63

5 79
o 100
k=) 130
2 ® 160
2 -10 200
= 250
g 12 320
400
14 500
630
16 790
1.0k
18 1.3k
1.6k
20 2.0k
102 2.5k
Frequency (kHz) 22

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view
the spectrum of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3, ...
'PlotAsTwoSidedSpectrum', false, ...
'FrequencyScale', 'log’', ...
'SpectralAverages',100);

for index = 1:500
X = randn(256,1);
y = octFilBank(x);
sa(y);

end

3-84

octaveFilterBank

=

File Tools

s -| & -|]| & | [&l 1) | 5

Processing

View Playback Help k!

REV=7.81 Hz |Sample rate=16kHz T=7.505

Analysis and Synthesis

The octaveFilterBank enables good reconstruction of a signal after analyzing or
modifying its subbands.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
sound(audioIn, fs)

Create a default octaveFilterBank. The default frequency range of the filter bank is 22
to 22,050 Hz. Frequencies outside of this range are attenuated in the reconstructed
signal.

3-85

3 System objects in Audio Toolbox

3-86

octFiltBank = octaveFilterBank('SampleRate',fs);

Pass the audio signal through the octave filter bank. The number of outputs depends on
the FrequencyRange, ReferenceFrequency, OctaveRatioBase, and Bandwidth
properties of the octave filter bank. Each channel of the input is passed through a filter
bank independently and is returned as a separate page in the output.

audioOut = octFiltBank(audioIn);

[N,numFilters,numChannels] = size(audioOut)

1265935

numFilters =

10

numChannels =

2

The octave filter bank introduces various group delays. To compensate for the group
delay, remove the beginning delay from the individual filter outputs and zero-pad the ends
of the signals so that they are all the same size. Use getGroupDelays to get the group
delays. Listen to the group delay-compensated reconstruction.

groupDelay = round(getGroupDelays(octFiltBank)); % round for simplicity
audioPadded = [audioOut;zeros(max(groupDelay),numFilters,numChannels)];
for i = 1l:numFilters

audioQut(:,1i,:) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i,:);
end

To reconstruct the original signal, sum the outputs of the filter banks for each channel.
Use squeeze to move the second channel from the third dimension to the second in the
reconstructed signal.

octaveFilterBank

reconstructedSignal = squeeze(sum(audioOut,2));
sound(reconstructedSignal, fs)

Algorithms

The octaveFilterBank is implemented as a parallel structure of octave filters.
Individual octave filters are designed as described by octaveFilter. By default, the
octave filter bank center frequencies are placed as specified by the ANSI S1.11-2004
standard. You can modify the filter placements using the Bandwidth, FrequencyRange,
ReferenceFrequency, and OctaveRatioBase properties.

References

[1] Orfanidis, Sophocles]. Introduction to Signal Processing. Englewood Cliffs, NJ:
Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

gammatoneFilterBank | graphicEQ | octaveFilter | splMeter

Topics
“Octave-Band and Fractional Octave-Band Filters”

3-87

3 System objects in Audio Toolbox

Introduced in R2019a

3-88

splMeter

splMeter

Measure sound pressure level of audio signal

Description

The splMeter System object computes sound pressure level measurements. The object
returns measurements for:

frequency-weighted sound levels
fast or slow time-weighted sound levels
equivalent-continuous sound levels

peak sound levels

maximum sound levels

To implement SPL metering:

1
2

Create the splMeter object and set its properties.
Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3-89

3 System objects in Audio Toolbox

3-90

Creation

Syntax

SPL
SPL

splMeter
splMeter(Name, Value)

Description

SPL = splMeter creates a System object, SPL, that performs SPL metering.

SPL = splMeter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Example: SPL = splMeter('FrequencyWeighting', 'C-
weighting', 'SampleRate',12000) creates a System object, SPL, that performs C-
weighting and operates at 12 kHz.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Bandwidth — Width of analysis bands
"Full band' (default) | '1 octave' | '2/3 octave'| '1/3 octave'

Width of analysis bands, specified as 'Full band', '1 octave', '2/3 octave', or
'1/3 octave'. If Bandwidth is specified as 'Full band', the SPL meter returns one
set of measurements for the whole frequency band. If Bandwidth is specified as '1
octave', '2/3 octave', or '1/3 octave', the SPL meter returns one set of
measurements per octave or fractional-octave band.

Tunable: No

splMeter

Data Types: char | string

OctaveFilterOrder — Order of octave filter
2 (default) | even integer

Order of the octave filter, specified as an even integer.
Tunable: No
Dependencies

To enable this property, set Bandwidth to 'l octave', '2/3 octave',or '1/3
octave'.

Data Types: single | double

FrequencyWeighting — Frequency weighting applied to input
'A-weighting' (default) | 'C-weighting' | 'Z-weighting' (no weighting)

Frequency weighting applied to input, specified as 'A-weighting', 'C-weighting', or
'Z-weighting', where Z-weighting corresponds to no weighting. The frequency
weighting is designed and implemented using the weightingFilter System object.

Tunable: No
Data Types: char | string

TimeWeighting — Time weighting (s)
'"Fast' (default) | 'Slow'

Time weighting, in seconds, for calculation of time-weighted sound level and maximum
time-weighted sound level, specified as 'Fast' or 'Slow'. The TimeWeighting
property is used to specify the coefficient of a lowpass filter.

e 'Fast'-1/8
o 'Slow' -1

Tunable: Yes

Data Types: char | string

PressureReference — Reference pressure for dB calculations (Pa)
2e-5 (default) | positive scalar

Reference pressure for dB calculations in Pa, specified as a positive scalar.

3-91

3 System objects in Audio Toolbox

3-92

Tunable: Yes

Data Types: single | double

TimeInterval — Time interval for reporting level measurements (s)
1 (default) | positive scalar

Time interval, in seconds, to report equivalent-continuous, peak, and maximum time-
weighted sound levels, specified as a positive scalar integer.

Tunable: No
Data Types: single | double

CalibrationFactor — Scalar calibration factor multiplied by input
1 (default) | positive finite scalar

Scalar calibration factor multiplied by input.
To set the calibration factor using a reference tone, use calibrate.

Tunable: No
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

Usage

Syntax

[Lt,Leq,Lpeak,Lmax] = SPL(audioIn)

splMeter

Description

[Lt,Leq,Lpeak,Lmax] = SPL(audioIn) returns measurement values for the time-
weighted (Lt) sound level of the current input frame, audioIn. The object also returns
the equivalent-continuous (Leq), peak (Lpeak), and maximum time-weighted (Lmax)
sound levels of the input to your SPL meter.

Input Arguments

audioIn — Audio input to SPL meter
column vector | matrix

Audio input to the SPL meter, specified as a column vector or matrix. The columns of the
matrix are treated as independent audio channels.

Data Types: single | double

Output Arguments

Lt — Time-weighted sound level (dB)
column vector | matrix | 3-D array

Time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the
same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

* 'Full band' (default) - Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.

» 'l octave', '2/3 octave',or '1/3 octave' --Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.
¢ [-- Number of rows in audioIn
¢ B -- Number of octave bands
¢ C -- Number of columns in audioIn

Data Types: single | double

Leq — Equivalent-continuous sound level (dB)
column vector | matrix | 3-D array

3-93

3 System objects in Audio Toolbox

3-94

Equivalent-continuous sound level in dB, returned as a column vector, matrix, or 3-D
array the same type as audioln.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:
* 'Full band' (default) -- Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.
» 'l octave', '2/3 octave',or '1/3 octave' --Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.
e L —- Number of rows in audioIn
e B -- Number of octave bands
e C -- Number of columns in audioIn

Data Types: single | double

Lpeak — Peak sound level (dB)
column vector | matrix | 3-D array

Peak sound level in dB, returned as a column vector, matrix, or 3-D array the same type as
audioln.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:
* 'Full band' (default) -- Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.
» 'l octave', '2/3 octave',or '1/3 octave' --Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.
e L —- Number of rows in audioIn
e B -- Number of octave bands
¢ C -- Number of columns in audioIn

Data Types: single | double

Lmax — Maximum time-weighted sound level (dB)
column vector | matrix | 3-D array

Maximum time-weighted sound level in dB, returned as a column vector, matrix, or 3-D
array the same type as audioln.

splMeter

Size and interpretation of the outputs depend on what the Bandwidth property is set to:
* 'Full band' (default) -- Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.
* 'l octave', '2/3 octave',or '1/3 octave' -- Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.
e L —- Number of rows in audioIn
* B -- Number of octave bands
¢ C -- Number of columns in audioIn

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to splMeter
calibrate Calibrate meter using calibration tone with known level
getCenterFrequencies Center frequencies of filters

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

3-95

3 System objects in Audio Toolbox

3-96

Measure SPL of Audio Signal

Use the splMeter System object™ to measure the A-weighted sound pressure level of a
streaming audio signal. Specify a two second time-interval for reporting and a fast time-
weighting. Visualize the SPL measurements using the dsp.TimeScope System object.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create
an audioDeviceWriter object to listen to the audio signal. Create a dsp.TimeScope
object to visualize SPL measurements. Create an splMeter to measure the sound
pressure level of the audio file. Use the default calibration factor of 1.

source = dsp.AudioFileReader('Ambiance-16-44pl-mono-12secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

scope = dsp.TimeScope('SampleRate',fs,
'TimeSpanOverrunAction', 'Scroll"',
'TimeSpan',3, 'ShowGrid"', true,
'YLimits',[20 110], 'AxesScaling', 'Auto’,
'ShowlLegend', true, 'BufferLength',4*3*fs,
'ChannelNames',
{'Lt AF','Leq A','Lpeak A','Lmax AF'},
'"Name', 'Sound Pressure Level Meter');

SPL = splMeter('TimeWeighting', 'Fast"',
'FrequencyWeighting', 'A-weighting',
'SampleRate', fs,

'TimeInterval',2);

In an audio stream loop:

Read in the audio signal frame.
Play the audio signal to your output device.

Call the SPL meter to return the time-weighted, equivalent-continuous, peak, and
maximum time-weighted sound levels in dB.

4 Display the sound levels using the scope.

As a best practice, release your objects once complete.

while ~isDone(source)
X = source();
player(x);

splMeter

[Lt,Leq,Lpeak,Lmax] = SPL(x);

scope([Lt,Leq,Lpeak,Lmax])
end

release(source)
release(player)
release(SPL)
release(scope)

3-97

3 System objects in Audio Toolbox

4 = =] &3

File Tools View Playback Help

Q- B~ 4 HEEA E

[ak}
a=]
s |
=
=
e

Stopped Offzet=0.237 T=12.2137

Octave SPL Metering

The splMeter enables you to monitor sound pressure level for octave and fractional-
octave bands. In this example, you monitor the equivalent-continuous sound pressure
level of 1/3-octave bands.

3-98

splMeter

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create
an audioDeviceWriter object so you can listen to the audio signal. Create an
splMeter to measure the octave sound pressure level of the audio file. Use the default
calibration factor of 1. Create a dsp.ArrayPlot object to visualize the equivalent-
continuous SPL for each octave band.

source = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

SPL = splMeter(
'Bandwidth','1/3 octave',
'SampleRate', fs);

centerFrequencies = getCenterFrequencies(SPL);

scope = dsp.ArrayPlot(...
'XDataMode', 'Custom',
'CustomxData', centerFrequencies,
'XLabel', 'Octave Band Center Frequencies (Hz)',
'YLabel', 'Equivalent-Continuous Sound Level (dB)',
'YLimits',[20 901,
'ShowGrid', true,
'"Name', 'Sound Pressure Level Meter');

In an audio stream loop:

Read in the audio signal frame.
Play the audio signal to your output device.
Call the SPL meter to return the equivalent-continuous sound pressure level in dB.

P W N =

Display the sound levels using the scope. Update the scope only when the equivalent-
continuous sound pressure level has changed.

As a best practice, release your objects once complete.

LegPrevious = zeros(size(centerFrequencies));
while ~isDone(source)

X = source();

player(x);

[~,Leq] = SPL(x);

for i = 1l:size(Leq,1)
if LeqPrevious ~= Leq(i,:)

3-99

3 System objects in Audio Toolbox

scope(Leq(i,:)")
LegPrevious = Leq(i,:);
end
end

end

release(source)

release(player)
(
(

release(SPL)
release(scope)

3-100

splMeter

4 = [=] EL

File Tools View Playback Help k!

@-|a- | M

Stopped

Algorithms

Sound pressure level calculations follow the algorithms described in [1]. You can specify
property values to conform to standards [2] and [3].

Calibration

To account for environmental and input device effects in SPL measurements, the audio
input is multiplied by a calibration factor:

x = audioln x CalibrationFactor

3-101

3 System objects in Audio Toolbox

3-102

The CalibrationFactor property can be set directly, or by using the calibrate
function, which compares a known level with acquired data. The known level is
determined using a physical calibrator.

Frequency Weighting

A-, C-, or Z-frequency weighting is applied. The frequency weighting is implemented
using the weightingFilter System object.

Analysis Bands
If you specify the Bandwidth property as 'l octave', '2/3 octave' or '1/3

octave', then the SPL calculations are applied to each octave or fractional-octave band.
These analysis bands are determined after frequency weighting.

Time-Weighted Sound Level

Time-weighted sound level is defined as the ratio of the time-weighted root mean squared
sound pressure to the reference sound pressure, converted to dB. That is,

(/0 [yieye - B
%

Lt = 1010g10

2
- 101og10{h(—%)}
Po

h(y?) can be interpreted as the convolution of y? with a filter with impulse response
(1/T)e‘t/f. y is the output of the frequency-weighting filter. The impulse response

1
corresponds to a lowpass filter of the form H(s) = . +/ Tl ya Using impulse invariance, the
T

discrete filter can be interpreted as,

Hz)= —Moxrs
1— e Yrxfs)z1

» T1is specified by the time-weighting coefficient as 0.125 (if TimeWeighting is set to
'Fast') or 1 (if TimeWeighting is set to'Slow").

splMeter

* fsis the sample rate specified by the SampleRate property.

Equivalent-Continuous Sound Level
Equivalent-continuous sound level is also called time-average sound level. It is defined as

the ratio of root mean squared sound pressure to the reference sound pressure, converted
to dB. That is,

2
(i) [yPat
Leq = 10log1p\ —————
Po

= 20log o(rms(y)/po)
where

* yis the output of the frequency-weighting filter.
* D, is the reference sound pressure, specified by the PressureReference property.
Peak Sound Level

Peak sound level is defined as the ratio of peak sound pressure to the reference sound
pressure, converted to dB. That is,

Lpeak = 20logyo(max(|y|)/po)

where

* yis the output of the frequency-weighting filter.
* D, is the reference sound pressure, specified by the PressureReference property.

Max Time-Weighted Sound Level

Maximum time-weighted sound level is defined as the greatest time-weighted sound level
within a stated time interval.

3-103

3 System objects in Audio Toolbox

3-104

References

[1] Harris, Cyril M. Handbook of Acoustical Measurements and Noise Control. 3rd ed.
American Institute of Physics, 1998.

[2] International Electrotechnical Commission. Electroacoustics - Sound level meters -
Part 1: Specifications. IEC 61672-1:2013.

[3] American National Standards Institute. ANSI S1.4: Specification for Sound Level
Meters. 1983.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

System Objects
loudnessMeter

Blocks
Loudness Meter

Functions
integratedLoudness

Topics
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2018a

calibrate

calibrate

Calibrate meter using calibration tone with known level

Syntax

calibrate(SPL,calibrationTone, trueLevel)

Description

calibrate(SPL,calibrationTone, trueLevel) sets the CalibrationFactor
property based on the computed sound pressure level of calibrationTone and the
known trueLevel. truelLevel refers to the physical calibrator level used to generate
the calibrationTone.

Input Arguments

SPL — splMeter System object
object

splMeter System object to be calibrated.

calibrationTone — Audio signal used to calibrate SPL meter
column vector

Audio signal used to calibrate the SPL meter, specified as a column vector.

Data Types: single | double

truelLevel — True level of calibration tone (dB)
scalar

True level of calibration tone in dB, specified as a scalar. The true level is the known level
of output by a physical calibrator.

Data Types: single | double

3-105

3 System objects in Audio Toolbox

Algorithms

To set the CalibrationFactor property on an splMeter object, the calibrate
function uses a calibration tone, the known level output by the calibrator to produce the
calibration tone, and the PressureReference property.

MATLAB
Calibrator
with o . . .
Audio Input Device Calibration Tone
known level

€ =N =

calibrationTone

trueLevel

P
P

calibrate

| PressureReference »

The CalibrationFactor property is set according to the equation:

O((trueLevel— k)/20)
CalibrationFactor =

rms(calibrationTone)

where k is 1 pascal relative to the reference pressure calculated in dB:

k = 2010910(PressureReference |

See Also

System Objects
splMeter

3-106

calibrate

Introduced in R2018a

3-107

3 System objects in Audio Toolbox

3-108

voiceActivityDetector

Detect presence of speech in audio signal

Description

The voiceActivityDetector System object detects the presence of speech in an audio
segment. You can also use the voiceActivityDetector System object to output an
estimate of the noise variance per frequency bin.

To detect the presence of speech:

1 Create the voiceActivityDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

VAD = voiceActivityDetector

voiceActivityDetector

VAD = voiceActivityDetector(Name,Value)

Description

VAD = voiceActivityDetector creates a System object, VAD, that detects the
presence of speech independently across each input channel.

VAD = voiceActivityDetector(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.

Example: VAD = voiceActivityDetector('InputDomain', 'Frequency') creates
a System object, VAD, that accepts frequency-domain input.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

InputDomain — Domain of input signal
‘Time' (default) | ' Frequency'

Domain of the input signal, specified as 'Time' or 'Frequency"'.

Tunable: No
Data Types: char | string

FFTLength — FFT length
[1 (default) | positive scalar

FFT length, specified as a positive scalar. The default is [], which means that the
FFTLength is equal to the number of rows of the input.

Tunable: No

3-109

3 System objects in Audio Toolbox

Dependencies

To enable this property, set InputDomain to 'Time'.

Data Types: single | double

Window — Window function for FFT
'"Hann' (default) | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser"' |
'Rectangular’

Time-domain window function applied before calculating the discrete-time Fourier
transform (DTFT), specified as 'Hann', 'Rectangular’', 'Flat Top', 'Hamming',
'Chebyshev', or 'Kaiser"'.

The window function is designed using the algorithms of the following functions:

* Hann -- hann

* Chebyshev -- chebwin

» Flat Top -- flattopwin

* Hamming -- hamming

* Kaiser -- kaiser

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time"'.

Data Types: char | string

SidelobeAttenuation — Sidelobe attenuation of window (dB)
60 (default) | real positive scalar

Sidelobe attenuation of the window in dB, specified as a real positive scalar.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time' and Window to 'Chebyshev' or
'Kaiser'.

Data Types: single | double

3-110

voiceActivityDetector

SilenceToSpeechProbability — Probability of transition from a frame of
silence to a frame of speech
0.2 (default) | scalar in the range [0,1]

Probability of transition from a frame of silence to a frame of speech, specified as a scalar
in the range [0,1].

Tunable: Yes

Data Types: single | double

SpeechToSilenceProbability — Probability of transition from a frame of
speech to a frame of silence
0.1 (default) | scalar in the range [0,1]

Probability of transition from a frame of speech to a frame of silence, specified as a scalar
in the range [0,1].

Tunable: Yes

Data Types: single | double
Usage

Syntax

[probability,noiseEstimate] = VAD(audioln)

Description
[probability,noiseEstimate] = VAD(audiolIn) applies a voice activity detector

on the input, audioIn, and returns the probability that speech is present. It also returns
the estimated noise variance per frequency bin.

Input Arguments

audioIn — Audio input to voice activity detector
scalar | vector | matrix

3-111

3 System objects in Audio Toolbox

3-112

Audio input to the voice activity detector, specified as a scalar, vector, or matrix. If
audiolIn is a matrix, the columns are treated as independent audio channels.

The size of the audio input is locked after the first call to the voiceActivityDetector
object. To change the size of audioIn, call release on the object.

If InputDomain is set to 'Time', audioIn must be real-valued. If InputDomain is set to
'"Frequency', audioIn can be real-valued or complex-valued.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

probability — Probability that speech is present
scalar | row vector

Probability that speech is present, returned as a scalar or row vector with the same
number of columns as audioln.

Data Types: single | double

noiseEstimate — Estimate of noise variance per frequency bin
column vector | matrix

Estimate of the noise variance per frequency bin, returned as a column vector or matrix
with the same number of columns as audioIn.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

clone Create duplicate System object
isLocked Determine if System object is in use

voiceActivityDetector

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object
step Run System object algorithm
Examples

Detect Voice Activity

Use the default voiceActivityDetector System object? to detect the presence of
speech in a streaming audio signal.

Create an audio file reader to stream an audio file for processing. Define parameters to
chunk the audio signal into 10 ms non-overlapping frames.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
fs = fileReader.SampleRate;
fileReader.SamplesPerFrame = ceil(10e-3*fs);

Create a default voiceActivityDetector System object to detect the presence of
speech in the audio file.

VAD = voiceActivityDetector;

Create a scope to plot the audio signal and corresponding probability of speech presence
as detected by the voice activity detector. Create an audio device writer to play the audio
through your sound card.

scope = dsp.TimeScope(

‘NumInputPorts',2,

'SampleRate’, fs,

'TimeSpan',3, ...

'BufferLength',3*fs,

'YLimits',[-1.5 1.5],

'TimeSpanOverrunAction', 'Scroll’,

'ShowLegend', true,

'ChannelNames', {'Audio', 'Probability of speech presence'});
deviceWriter = audioDeviceWriter('SampleRate', fs);

In an audio stream loop:

3-113

3 System objects in Audio Toolbox

Read from the audio file.
Calculate the probability of speech presence.
Visualize the audio signal and speech presence probability.

A W N R

Play the audio signal through your sound card.

while ~isDone(fileReader)
audioIn = fileReader();
probability = VAD(audioln);
scope(audiolIn,probability*ones(fileReader.SamplesPerFrame, 1))
deviceWriter(audiolIn);

end

3-114

voiceActivityDetector

4 = =] &3

File Tools View Playback Help o

Q- B~ 4 HEEA E

[ak}
a=]
s |
=
=
e

Processing Offzet=12.54 |T=15.53

Detect Voice Activity Using Overlapped Frames

Use a voice activity detector to detect the presence of speech in an audio signal. Plot the
probability of speech presence along with the audio samples.

Create a dsp.AudioFileReader System object? to read a speech file.

3-115

3 System objects in Audio Toolbox

3-116

afr = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
fs = afr.SampleRate;

Chunk the audio into 20 ms frames with 75% overlap between successive frames. Convert
the frame time in seconds to samples. Determine the hop size (the increment of new
samples). In the audio file reader, set the samples per frame to the hop size. Create a
default dsp.AsyncBuffer object to manage overlapping between audio frames.

frameSize = ceil(20e-3*fs);
overlapSize = ceil(0.75*frameSize);
hopSize = frameSize - overlapSize;
afr.SamplesPerFrame = hopSize;

inputBuffer = dsp.AsyncBuffer('Capacity', frameSize);

Create a voiceActivityDetector System object. Specify an FFT length of 1024.

VAD = voiceActivityDetector('FFTLength',1024);

Create a scope to plot the audio signal and corresponding probability of speech presence
as detected by the voice activity detector. Create an audioDeviceWriter System object
to play audio through your sound card.

scope = dsp.TimeScope('NumInputPorts',2,
'SampleRate’, fs,
'TimeSpan',3, ...
'BufferLength',3*fs,
'YLimits',[-1.5,1.5],
'TimeSpanOverrunAction', 'Scroll’,
'ShowLegend', true,
'ChannelNames', {'Audio', 'Probability of speech presence'});

player = audioDeviceWriter('SampleRate',fs);
Initialize a vector to hold the probability values.
pHold = ones(hopSize,1);

In an audio stream loop:

Read a hop worth of samples from the audio file and save the samples into the buffer.
Read a frame from the buffer with specified overlap from the previous frame.

Call the voice activity detector to get the probability of speech for the frame under
analysis.

voiceActivityDetector

Set the last element of the probability vector to the new probability decision.
Visualize the audio and speech presence probability using the time scope.

Play the audio through your sound card.
Set the probability vector to the most recent result for plotting in the next loop.

while ~isDone(afr)

end

x = afr();
n = write(inputBuffer,x);

overlappedInput = read(inputBuffer, frameSize,overlapSize);
p = VAD(overlappedInput);

pHold(end) = p;
scope(x,pHold)

player(x);

pHold(:) = p;

3-117

3 System objects in Audio Toolbox

4 = =] &3

File Tools View Playback Help

Q- B~ 4 HEEA E

[ak}
a=]
s |
=
=
e

Processing Offset=12.535 T=155297

Release the player once the audio finishes playing.

release(player)

3-118

voiceActivityDetector

Frequency-Domain Voice Activity Detection and Cepstral Feature Extraction

Many feature extraction techniques operate on the frequency domain. Converting an
audio signal to the frequency domain only once is efficient. In this example, you convert a
streaming audio signal to the frequency domain and feed that signal into a voice activity
detector. If speech is present, mel-frequency cepstral coefficients (MFCC) features are
extracted from the frequency-domain signal using the cepstralFeatureExtractor
System object™.

Create a dsp.AudioFileReader System object to read from an audio file.

fileReader = dsp.AudioFileReader('Counting-16-44pl-mono-15secs.wav');
fs = fileReader.SampleRate;

Process the audio in 30 ms frames with a 10 ms hop. Create a default dsp.AsyncBuffer
object to manage overlap between audio frames.

samplesPerFrame = ceil(0.03*fs);
samplesPerHop = ceil(0.01*fs);
samplesPerOverlap = samplesPerFrame - samplesPerHop;

fileReader.SamplesPerFrame = samplesPerHop;
buffer = dsp.AsyncBuffer;

Create a voiceActivityDetector System object and a cepstralFeatureExtractor
System object. Specify that they operate in the frequency domain. Create a
dsp.SignalSink to log the extracted cepstral features.

VAD = voiceActivityDetector('InputDomain', 'Frequency');

cepFeatures = cepstralFeatureExtractor('InputDomain', 'Frequency', 'SampleRate',fs, 'LogEl

sink = dsp.SignalSink;
In an audio stream loop:

1 Read one hop's of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.

3 Call the voice activity detector to get the probability of speech for the frame under
analysis.

4 If the frame under analysis has a probability of speech greater than 0.75, extract
cepstral features and log the features using the signal sink. If the frame under
analysis has a probability of speech less than 0.75, write a vector of NaNs to the sink.

3-119

3 System objects in Audio Toolbox

3-120

threshold 0.75;

nanVector nan(1,13);

while ~isDone(fileReader)
audioIn = fileReader();
write(buffer,audioln);

overlappedAudio = read(buffer,samplesPerFrame,samplesPerOverlap);

X = fft(overlappedAudio,2048);

probabilityOfSpeech = VAD(X);

if probabilityOfSpeech > threshold
xFeatures = cepFeatures(X);
sink(xFeatures')

else
sink(nanVector)

end

end

Visualize the cepstral coefficients over time.

timeVector = linspace(0,15,size(sink.Buffer,1));
plot(timeVector,sink.Buffer)

xlabel('Time (s)')

ylabel('MFCC Amplitude')
legend('Log-Energy','cl','c2','c3"','c4"','c5','c6"',"'c7’

,'c8','c9', 'cl0’

,'cll', 'cl2')

voiceActivityDetector

MFCC Amplitude

Log-Energy

et

Time (s)

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using
the pitch function. Then use the voiceActivityDetector to remove irrelevant pitch
information that does not correspond to the speaker.

Read in the audio file and associated sample rate.

[audio,fs] = audioread('Counting-16-44pl-mono-15secs.wav');

3-121

3 System objects in Audio Toolbox

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop).
Specify that the pitch function searches for the fundamental frequency over the range
50-150 Hz and postprocesses the results with a median filter. Plot the results.

windowlLength = round(0.05*fs);
overlapLength = round(0.04*fs);
hopLength = windowlLength - overlaplLength;

[f0,loc] = pitch(audio,fs,
'WindowLength',windowLength,
'OverlapLength',overlapLength,
'Range', [50 15017,
'MedianFilterLength',3);

plot(loc/fs,f0)

ylabel('Fundamental Frequency (Hz)")
xlabel('Time (s)')

3-122

voiceActivityDetector

Fundamental Frequency (Hz)

150
140 | -

130 | | .

uu*"'hl‘twh-% o o ol s (]

100 | |

70 r |_

60 7

ED i i i i i i i
0 2 4 G 8 10 12 14 16

Time (s)

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped
frames. Also create a voiceActivityDetector System object™ to determine if the
frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the
probability that the frame contains speech. To mimic the decision spacing in time of the
pitch function, the first frame read from the buffer has no overlap.

n=1;
probabilityVector = zeros(numel(loc),1);

3-123

3 System objects in Audio Toolbox

while buffer.NumUnreadSamples >= hopLength
if n==1
x = read(buffer,windowLength);
else
X
end
probabilityVector(n) = VAD(x);
n = n+l;

read(buffer,windowLength,overlapLength);

end

Use the probability vector determined by the voiceActivityDetector to plot a pitch
contour for the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;

fO(~validIdx) = nan;

plot(loc/fs,f0)

ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

3-124

voiceActivityDetector

Fundamental Frequency (Hz)

150
140 | | -

wr | ! NI

120 1 (

100 | |

70 r |_

60 7

ED i i i i i i i

Algorithms

The voiceActivityDetector implements the algorithm described in [1].

3-125

3 System objects in Audio Toolbox

audioln —| window FFT Power ,| Probability

3-126

SpeechToSilenceProbability

SilenceToSpeechProbability
FFTLength

|

Posterior Prior

SNR SNR of Speech » probability

Window T

Noise ‘
SidelobeAttenuation Variance - noiseEstimate

Estimation

If InputDomain is specified as 'Time', the input signal is windowed and then converted
to the frequency domain according to the Window, SidelobeAttenuation, and
FFTLength properties. If InputDomain is specified as frequency, the input is assumed to
be a windowed discrete time Fourier transform (DTFT) of an audio signal. The signal is
then converted to the power domain. Noise variance is estimated according to [2]. The
posterior and prior SNR are estimated according to the Minimum Mean-Square Error
(MMSE) formula described in [3]. A log likelihood ratio test and Hidden Markov Model
(HMM)-based hang-over scheme determine the probability that the current frame
contains speech, according to [1].

References

[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice
Activity Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and
Minimum Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9,
No. 5, 2001, pp. 504-512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square
Error Short-Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics,
Speech, and Signal Processing. Vol. 32, No. 6, 1984, pp. 1109-1121.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

voiceActivityDetector

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also

System Objects
cepstralFeatureExtractor

Blocks
Voice Activity Detector

Functions
mfcc | pitch

Introduced in R2018a

3-127

3 System objects in Audio Toolbox

3-128

cepstralFeatureExtractor

Extract cepstral features from audio segment

Description

The cepstralFeatureExtractor System object extracts cepstral features from an
audio segment. Cepstral features are commonly used to characterize speech and music
signals.

To extract cepstral features:

1 Create the cepstralFeatureExtractor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

cepFeatures = cepstralFeatureExtractor
cepFeatures = cepstralFeatureExtractor(Name,Value)
Description

cepFeatures = cepstralFeatureExtractor creates a System object,
cepFeatures, that calculates cepstral features independently across each input channel.
Columns of the input are treated as individual channels.

cepFeatures = cepstralFeatureExtractor(Name,Value) sets each property
Name to the specified Value. Unspecified properties have default values.

Example: cepFeatures =
cepstralFeatureExtractor('InputDomain', 'Frequency', 'SampleRate’', fs,"

cepstralFeatureExtractor

LogEnergy', 'Replace') accepts a signal in the frequency domain, sampled at fs Hz.
The first element of the coefficients vector is replaced by the log energy value.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FilterBank — Type of filter bank
'Mel' (default) | 'Gammatone'

Type of filter bank, specified as either 'Mel' or 'Gammatone'. When FilterBank is set
to Mel, the object computes the mel frequency cepstral coefficients (MFCC). When
FilterBank is set to Gammatone, the object computes the gammatone cepstral
coefficients (GTCC).

Data Types: char | string

InputDomain — Domain of input signal
'Time' (default) | ' Frequency'
Domain of the input signal, specified as either 'Time"' or 'Frequency'.

Data Types: char | string

NumCoeffs — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the
number of valid passbands. The number of valid passbands depends on the type of filter
bank:

* Mel -- The number of valid passbands is defined as sum(BandEdges <=
floor(SampleRate/2))-2.

* Gammatone -- The number of valid passbands is defined as
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1l))).

3-129

3 System objects in Audio Toolbox

3-130

Data Types: single | double

FFTLength — FFT length
[1 (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is
equal to the number of rows in the input signal.

Dependencies

To enable this property, set InputDomain to 'Time".

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LogEnergy — Specify how the log energy is shown
"Append’ (default) | 'Replace’ | 'Ignore’

Specify how the log energy is shown in the coefficients vector output, specified as:

* 'Append' -- The object prepends the log energy to the coefficients vector. The length
of the coefficients vector is 1 + NumCoeffs.

* 'Replace' -- The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

* 'Ignore' -- The object does not calculate or return the log energy.

Data Types: char | string

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.

Tunable: Yes

Data Types: single | double

Advanced properties

BandEdges — Band edges of mel filter bank (Hz)
row vector

cepstralFeatureExtractor

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing
row vector in the range [0, »). The maximum bandedge frequency can be any finite
number. The number of bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically after.
The default band edges are set as recommended by [1].

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: single | double

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the filter bank in Hz, specified as a positive, monotonically increasing
two-element row vector. The maximum frequency can be any finite number. The center
frequencies of the filter bank are equally spaced between
hz2erb(FrequencyRange(1)) and hz2erb(FrequencyRange(2)) on the ERB scale.

Dependencies

To enable this property, set FilterBank to Gammatone.

Data Types: single | double

FilterBankDesignDomain — Domain for mel filter bank design
'Hz' (default) | 'Bin'

Domain for filter bank design, specified as either 'Hz' or 'Bin'. The filter bank is
designed as overlapped triangles with band edges specified by the BandEdges property.

The BandEdges property is specified in Hz. When you set the design domain to:
* 'Hz' -- Filter bank triangles are drawn in Hz and are mapped onto bins.

Here is an example that plots the filter bank in bins when the
FilterBankDesignDomain is setto 'Hz"':

[audioFile, fs] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');
duration = round(0.02*fs); % 20 ms audio segment

audioSegment = audioFile(5500:5500+duration-1);

cepFeatures = cepstralFeatureExtractor('SampleRate', fs)

3-131

3 System objects in Audio Toolbox

cepFeatures =

cepstralFeatureExtractor with properties:

Properties

InputDomain:
NumCoeffs:
FFTLength:
LogEnergy:

SampleRate:

Advanced Properties

BandEdges:
FilterBankDesignDomain:
FilterBankNormalization:

'"Time'
13

[l
"Append’
22500

[1x42 double]
IHZI
'Bandwidth'

Pass the audio segment as an input to the cepstral feature extractor algorithm to lock

the object.

[coeffs,delta,deltaDelta] =

cepFeatures(audioSegment) ;

Using the getFilters function, get the filter bank. Plot the filter bank.

[filterbank, freq] = getFilters(cepFeatures);
plot(freq(l1:150),filterbank(1:150,:))

3-132

cepstralFeatureExtractor

zFigurﬂ
Desktop Window Help

File Edit View Insert Tools
NDEdde | | ARARODDEL- 2| 0EH| a1
Filter bank with design domain set to Hz
0.015 - . . : . : .
0.01 7
it
s | i |
D I
= Il
0.005 | \
h |
LU
0 1000 2000 3000

For details, see [1].
'Bin' -- The bandedge frequencies in 'Hz' are converted to bins. The filter bank

triangles are drawn symmetrically in bins.
Change the FilterBankDesignDomain property to 'Bin':

release(cepFeatures);
cepFeatures.FilterBankDesignDomain = 'Bin';
3-133

3 System objects in Audio Toolbox

[coeffs,delta,deltaDelta]
[filterbank, freq] = getFilters(cepFeatures);

plot(freq(l1:150),filterbank(1:150,:))

cepFeatures(audioSegment);

ZFigurﬂ
Insert Tools Desktop Window Help

File

2 0E a3

o Bin

Edit View
LALODE A -

ith design domain set t

NEAS| b
Filter bank w

0.016

0.014 ‘

0.012

Weights
=]
[=]
8

0.004

0.002

T
———————

HKXH
7000 8000

6000

0

Bin

1000 2000 3000 4000 5000

For details, see [2].

3-134

cepstralFeatureExtractor

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: char | string

FilterBankNormalization — Normalize filter bank
‘Bandwidth' (default) | ‘Area’ | 'None'

Normalization technique used on the weights of the filter bank, specified as:

* 'Bandwidth' -- The weights of each bandpass filter are normalized by the
corresponding bandwidth of the filter.

* 'Area' -- The weights of each bandpass filter are normalized by the corresponding
area of the bandpass filter.

* 'None' -- The weights of the filter are not normalized.

Data Types: char | string
Usage

Syntax

[coeffs,delta,deltaDelta] = cepFeatures(audioln)

Description

[coeffs,delta,deltaDelta] = cepFeatures(audioIn) returns the cepstral
coefficients, the log energy, the delta, and the delta-delta.

The log energy value prepends the coefficient vector or replaces the first element of the
coefficients vector based on whether you set the LogEnergy property to 'Append' or
'Replace'. For details, see “coeffs” on page 3-0

Input Arguments

audioIn — Audio input to cepstral feature extractor
column vector | matrix

3-135

3 System objects in Audio Toolbox

3-136

Audio input to the cepstral feature extractor, specified as a column vector or a matrix. If
specified as a matrix, the columns are treated as independent audio channels.

Data Types: single | double

Output Arguments

coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is
an N-by-M matrix, N is determined by the values you specify in NumCoeffs and
LogEnergy properties. M equals the number of input audio channels.

When the LogEnergy property is set to:

* 'Append' -- The object prepends the log energy value to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs. This is the default setting of the
LogEnergy property.

* 'Replace' -- The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

* 'Ignore' -- The object does not calculate or return the log energy.
Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a vector or a
matrix. The delta array is of the same size and data type as the coeffs array.

In this example, cepFeatures is the cepstral feature extractor that accepts audio input
signal sampled at 12 kHz. Stream in three segments of audio signal on three consecutive
calls to the object algorithm. Return the cepstral coefficients of the filter bank and the
corresponding delta values.

cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeffl,deltal] cepFeatures(audioIn);
[coeff2,delta2] cepFeatures(audioIn);
[coeff3,delta3] cepFeatures(audioIn);

delta2 is computed as coeff2-coeffl, while delta3 is computed as coeff3-coeff2.
The initial array, deltal, is an array of zeros.

cepstralFeatureExtractor

Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a vector or a
matrix. The deltaDelta array is the same size and data type as the coeffs and delta
arrays.

In this example, consecutive calls to the cepstral feature extractor algorithm return the
deltaDelta values in addition to the coefficients and the delta values.

cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeffl,deltal,deltaDeltal] = cepFeatures(audioln);
[coeff2,delta2,deltaDelta2] = cepFeatures(audioln);
[coeff3,delta3,deltaDelta3] = cepFeatures(audioln);

deltaDelta2 is computed as delta2-deltal, while deltaDelta3 is computed as
delta3-delta2. The initial array, deltaDeltal, is an array of zeros.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to cepstralFeatureExtractor
getFilters Get auditory filter bank

Common to All System Objects

clone Create duplicate System object

isLocked Determine if System object is in use

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

step Run System object algorithm

3-137

3 System objects in Audio Toolbox

3-138

Examples

Get MFCC Data for Speech Segment

Extract the mel frequency cepstral coefficients and the log energy values of segments in a
speech file. Return delta, the difference between current and the previous cepstral
coefficients, and deltaDelta, the difference between the current and the previous
delta values. The log energy value the object computes can prepend the coefficients
vector or replace the first element of the coefficients vector. This is done based on
whether you set the LogEnergy property of the cepstralFeatureExtractor object to
'Replace' or 'Append’.

Read an audio signal from 'SpeechDFT-16-8-mono-5secs.wav' file. Extract a 40 ms
segment from the audio data. Create a cepstralFeatureExtractor object. The
cepstral coefficients computed by the default object are the mel frequency coefficients. In
addition, the object computes the log energy, delta, and delta-delta values of the audio
segment.

[audioFile, fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');
duration = round(0.04*fs); % 40 ms

audioSegment = audioFile(5500:5500+duration-1);

cepFeatures = cepstralFeatureExtractor('SampleRate’, fs)

cepFeatures =
cepstralFeatureExtractor with properties:

Properties
FilterBank: 'Mel’
InputDomain: 'Time'
NumCoeffs: 13
FFTLength: []
LogEnergy: 'Append'
SampleRate: 8000

Show all properties

The LogEnergy property is set to 'Append'. The first element in the coefficients vector
is the log energy value and the remaining elements are the 13 cepstral coefficients
computed by the object. The number of cepstral coefficients is determined by the value
you specify in the NumCoef fs property.

cepstralFeatureExtractor

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment)

coeffs = 14x1

3.8281
-19.4827
11.7649
-6.2989
5.8894
-0.3366
0.9583
0.8768
-2.0384
2.3678

delta = 14x1

[ocNoNoNoNoNoNoNoNoNG]

deltaDelta = 14x1

[cNoNoNoNoNoNoNoNoNo]

3-139

3 System objects in Audio Toolbox

The initial values for the delta and deltaDelta arrays are always zero. Consider
another 40 ms audio segment in the file and extract the cepstral features from this
segment.

audioSegmentTwo = audioFile(5820:5820+duration-1);
[coeffsTwo,deltaTwo,deltaDeltaTwo] = cepFeatures(audioSegmentTwo)

coeffsTwo = 14x1

3.0899
-20.4756
10.4455
-5.8759
7.2215
-1.2027
-0.0236
1.9183
-1.2127
2.0669

deltaTwo = 14x1

-0.7382
-0.9928
-1.3194
0.4230
1.3321
-0.8661
-0.9819
1.0415
0.8257
-0.3009

deltaDeltaTwo = 14x1
-0.7382

-0.9928
-1.3194

3-140

cepstralFeatureExtractor

.4230
.3321
.8661
.9819
.0415
.8257