
Audio Toolbox™
Reference

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Reference Guide
© COPYRIGHT 2016 - 2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps in Audio Toolbox
1

Functions in Audio Toolbox
2

System objects in Audio Toolbox
3

Classes in Audio Toolbox
4

Blocks in Audio Toolbox
5

iii

Contents

Apps in Audio Toolbox

1

Audio Labeler
Define and visualize ground-truth labels

Description
The Audio Labeler app enables you to label ground-truth data at both the region level
and file level.

Using the app, you can:

• Create label definitions for consistent and fast labeling.
• Visualize the time-domain waveform during playback.
• Interactively specify labels at the file level and region level. You can specify regions by

drawing directly on the time-domain waveform.
• Record new audio to add to your dataset.

The app exports data as a labeledSignalSet object. You can use labeledSignalSet
to train a network, classifier, or analyze data and report statistics.

Open the Audio Labeler App
• MATLAB® toolstrip: On the Apps tab, under Signal Processing and

Communications, click the app icon.
• MATLAB command prompt: Enter audioLabeler.

Examples
• “Label Audio Using Audio Labeler”

Programmatic Use
audioLabeler opens the app, enabling you to label ground-truth data about audio.

1 Apps in Audio Toolbox

1-2

See Also
audioDatastore | audioDeviceReader | audioDeviceWriter | labeledSignalSet
| signalLabelDefinition

Topics
“Label Audio Using Audio Labeler”

Introduced in R2018b

 Audio Labeler

1-3

Impulse Response Measurer
Measure impulse response of audio system

Description
The Impulse Response Measurer app enables you to acquire, analyze, and export
impulse response and frequency response measurements through a user interface.

Using this app, you can:

• Acquire impulse responses to create filters and generate models for offline
simulations.

• Determine whether audio devices (loudspeakers, for example) meet time and
frequency specifications.

• Optimize audio systems, such as automotive-acoustic systems, to match goal
specifications.

• Acquire accurate impulse response measurements for use in acoustic reporting.

Open the Impulse Response Measurer App
MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications,
click the app icon.

MATLAB Command prompt: Enter impulseResponseMeasurer.

Examples

Verify Input/Output Configuration

For large systems with multiple audio devices and multiple input and output channels,
tracking how reported devices and channels correspond to physical devices can be
difficult. The Impulse Response Measurer provides a level monitor so that you can
verify your audio I/O configuration.

1 Apps in Audio Toolbox

1-4

To open the level monitor, click Level Monitor, .

Choose a player and recorder channel, the test signal, and the output level. Verify that the
level reported by the recorder reacts appropriately to level changes output by the player.
Once you are satisfied that your system is configured correctly, close the level monitor
and begin the impulse response capture.

• “Impulse Response Measurer Walkthrough”

 Impulse Response Measurer

1-5

Parameters
Method — Select excitation signal as MLS or swept sine wave
MLS (default) | Exponential Swept Sine

Select the excitation signal algorithm used to generate an impulse response
measurement:

• MLS –– The maximum length sequence (MLS) technique is based on the excitation of
the acoustical space by a periodic pseudorandom signal. The impulse response is
obtained by circular cross-correlation between the measured output and the test tone.
For more details, see [2].

• Exponential Swept Sine –– The swept sine measurement technique uses an
exponential time-growing frequency sweep as an output signal. The output signal is
recorded, and deconvolution is used to recover the impulse response from the swept
sine tone. For more details, see [1]. The swept sine technique enables you to modify
additional Advanced Settings to control the excitation signal. The advanced settings
apply per run:

• Sweep start frequency
• Sweep stop frequency
• Sweep duration
• End silence duration

The value of the End silence duration is read-only and depends on the Sweep
duration and Duration per Run (s): End silence duration = Duration per Run −
Sweep duration

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."

Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of
Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246–262.

1 Apps in Audio Toolbox

1-6

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time
Partitioned Convolution on a DSP Board." Application of Signal Processing to
Audio and Acoustics, 2003 IEEE Workshop, pp. 71–74. IEEE, 2003.

See Also
System Objects
audioPlayerRecorder | reverberator | splMeter

Topics
“Impulse Response Measurer Walkthrough”

Introduced in R2018a

 Impulse Response Measurer

1-7

Audio Test Bench
Debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can develop,
debug, test, and tune your audio plugin in real time. You can interact with properties of
your audio plugin using associated parameter graphical widgets. See
audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.
• Run validation checks and generate VST plugins.

Develop and Test Features
Button Description

Run Run your audio plugin in an audio stream loop using the specified
input and output configuration. You can tune parameters of your
audio processing algorithm in real time. The MATLAB command line
and objects used by the test bench are locked while the test bench
is running.

Pause
(appears
while test
bench runs)

Pause audio stream loop. The MATLAB command line is released.
Objects used by the test bench remain locked.

Step Forward Call the processing function of your audio plugin one time in an
audio stream loop, with input and output specified by your input
and output configuration.

1 Apps in Audio Toolbox

1-8

Button Description
Stop Stop the audio stream loop. The MATLAB command line and objects

used by the test bench are released.
Reset Reset internal states of your audio plugin and set parameters to

their initial values.
View Source
Code

Open the source file of your audio plugin.

Synchronize
to MIDI
Controls

Start the configureMIDI user interface (UI) for your plugin object.

Open the
visualizer of
the object
under test

Call the visualize function of the object under test with no input
arguments. If your object under test does not define a visualize
function, then the button does not appear.

See the audiopluginexample.VarSlopeBandpassFilter
plugin for an example of how to define the visualize function.

Time Scope Open an instance of dsp.TimeScope, which provides a time-
domain visualization of the output from your audio stream loop.

Spectrum
Analyzer

Open an instance of dsp.SpectrumAnalyzer, which provides a
frequency-domain visualization of the output from your audio
stream loop.

Generate VST
2 Audio
Plugin

Open a UI to validate and generate your plugin object. For Audio
Toolbox System objects, the Audio Test Bench creates an
audioPlugin class using the createAudioPluginClass method
of the object. The created plugin class is used to generate a plugin
object. For more information, see validateAudioPlugin,
generateAudioPlugin, and the createAudioPluginClass
method of your System object™.

Generate
MATLAB
Script

Generate a MATLAB script implementation of your audio test bench.

Help Open MATLAB documentation for Audio Test Bench.

 Audio Test Bench

1-9

Button Description
Configure
Input

Open the input configuration UI. The UI options depend on your
choice of input to the audio stream loop. See the corresponding
documentation for your input choice:

• Audio File Reader –– dsp.AudioFileReader
• Audio Device Reader –– audioDeviceReader
• Audio Oscillator –– audioOscillator
• Wavetable Synthesizer –– wavetableSynthesizer
• Chirp Signal –– dsp.Chirp
• Colored Noise –– dsp.ColoredNoise

Configure
Output

Open the output configuration UI. The UI options depend on
whether you choose Audio File Writer or Audio Device
Writer for the output from your audio stream loop. If you choose to
output Both, two dialog boxes open: one for the Audio File
Writer and one for the Audio Device Writer. For more
information, see dsp.AudioFileWriter and
audioDeviceWriter.

Open the Audio Test Bench App
MATLAB command prompt: Enter audioTestBench.

Examples
• “Audio Test Bench Walkthrough”

Programmatic Use
audioTestBench pluginClass opens the Audio Test Bench for an instance of
pluginClass. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

1 Apps in Audio Toolbox

1-10

audioTestBench(pluginClassInstance) opens the Audio Test Bench for
pluginClassInstance, where pluginClassInstance is an instance of an audio
plugin class. The input to audioTestBench must derive from the audioPlugin class,
not the audioPluginSource class.

audioTestBench ASTSystemObject opens the Audio Test Bench for an instance of a
compatible Audio Toolbox System object.

audioTestBench(ASTSystemObjectInstance) opens the Audio Test Bench for
ASTSystemObjectInstance, where ASTSystemObjectInstance is an instance of a
compatible Audio Toolbox System object.

audioTestBench(hostedPlugin) opens the Audio Test Bench for hostedPlugin,
where hostedPlugin is an object returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio
plugin you want to host. If the plugin is located in the current folder, specify it by its
name.

Tips
• The Audio Test Bench provides persistent input and output settings across sessions.

See Also
Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Audio Test Bench Walkthrough”
“What Are DAWs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”
“Audio Plugin Example Gallery”

 Audio Test Bench

1-11

Introduced in R2016a

1 Apps in Audio Toolbox

1-12

Functions in Audio Toolbox

2

melSpectrogram
Mel spectrogram

Syntax
S = melSpectrogram(audioIn,fs)
S = melSpectrogram(audioIn,fs,Name,Value)
[S,F,T] = melSpectrogram(___)
melSpectrogram(___)

Description
S = melSpectrogram(audioIn,fs) returns the mel spectrogram of the audio input at
sample rate fs. The function treats columns of the input as individual channels.

S = melSpectrogram(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.

[S,F,T] = melSpectrogram(___) returns the center frequencies of the bands in Hz
and the location of each window of data in seconds. The location corresponds to the
center of each window. You can use this output syntax with any of the previous input
syntaxes.

melSpectrogram(___) plots the mel spectrogram on a surface in the current figure.

Examples

Calculate Mel Spectrogram

Use the default settings to calculate the mel spectrogram for an entire audio file. Print
the number of bandpass filters in the filter bank and the number of frames in the mel
spectrogram.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

2 Functions in Audio Toolbox

2-2

S = melSpectrogram(audioIn,fs);

[numBands,numFrames] = size(S);
fprintf("Number of bandpass filters in filterbank: %d\n",numBands)
fprintf("Number of frames in spectrogram: %d\n",numFrames)

Number of bandpass filters in filterbank: 32
Number of frames in spectrogram: 1551

Plot the mel spectrogram.

melSpectrogram(audioIn,fs)

 melSpectrogram

2-3

Calculate Mel Spectrums of 2048-Point Windows

Calculate the mel spectrums of 2048-point windows with 1024-point overlap. Convert to
the frequency domain using a 4096-point FFT. Pass the frequency-domain representation
through 64 half-overlapped triangular bandpass filters that span the range 62.5 Hz to 8
kHz.

[audioIn,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');

S = melSpectrogram(audioIn,fs, ...
 'WindowLength',2048,...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3]);

Call melSpectrogram again, this time with no output arguments so that you can
visualize the mel spectrogram. The input audio is a multichannel signal. If you call
melSpectrogram with a multichannel input and with no output arguments, only the first
channel is plotted.

melSpectrogram(audioIn,fs, ...
 'WindowLength',2048,...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3])

2 Functions in Audio Toolbox

2-4

Get Filter Bank Center Frequencies and Analysis Window Time Instants

melSpectrogram applies a frequency-domain filter bank to audio signals that are
windowed in time. You can get the center frequencies of the filters and the time instants
corresponding to the analysis windows as the second and third output arguments from
melSpectrogram.

Get the mel spectrogram, filter bank center frequencies, and analysis window time
instants of a multichannel audio signal. Use the center frequencies and time instants to
plot the mel spectrogram for each channel.

 melSpectrogram

2-5

[audioIn,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');

[S,cF,t] = melSpectrogram(audioIn,fs);

S = 10*log10(S+eps); % Convert to dB for plotting

for i = 1:size(S,3)
 figure(i)
 surf(t,cF,S(:,:,i),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 view([0,90])
 title(sprintf('Channel %d',i))
 axis([t(1) t(end) cF(1) cF(end)])
end

2 Functions in Audio Toolbox

2-6

 melSpectrogram

2-7

2 Functions in Audio Toolbox

2-8

 melSpectrogram

2-9

Input Arguments
audioIn — Audio input
column vector | matrix

Audio input, specified as a column vector or matrix. If specified as a matrix, the function
treats columns as independent audio channels.
Data Types: single | double

fs — Input sample rate (Hz)
positive scalar

2 Functions in Audio Toolbox

2-10

Input sample rate in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WindowLength',1024

WindowLength — Analysis window length (samples)
round(0.03*fs) (default) | integer in the range [2, size(audioIn,1)]

Analysis window length in samples, specified as the comma-separated pair consisting of
'WindowLength' and an integer in the range [2, size(audioIn,1)].
Data Types: single | double

OverlapLength — Analysis window overlap length (samples)
round(0.02*fs) (default) | integer in the range [0, (WindowLength - 1)]

Analysis window overlap length in samples, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, (WindowLength -
1)].
Data Types: single | double

FFTLength — Number of DFT points
WindowLength (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair
consisting of 'FFTLength' and a positive integer greater than or equal to
WindowLength. If unspecified, FFTLength defaults to WindowLength.
Data Types: single | double

NumBands — Number of mel bandpass filters
32 (default) | positive integer

Number of mel bandpass filters, specified as the comma-separated pair consisting of
'NumBands' and a positive integer.

 melSpectrogram

2-11

Data Types: single | double

FrequencyRange — Frequency range over which to compute mel spectrogram
(Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to compute the mel spectrogram in Hz, specified as the
comma-separated pair consisting of 'FrequencyRange' and a two-element row vector of
monotonically increasing values in the range [0, fs/2].
Data Types: single | double

SpectrumType — Type of mel spectrogram
'power' (default) | 'magnitude'

Type of mel spectrogram, specified as the comma-separated pair consisting of
'SpectrumType' and 'power' or 'magnitude'.
Data Types: char | string

Output Arguments
S — Mel spectrogram
column vector | matrix | 3-D array

Mel spectrogram, returned as a column vector, matrix, or 3-D array. The dimensions of S
are L-by-M-by-N, where:

• L is the number of frequency bins in each mel spectrum. NumBands and fs determine
L.

• M is the number of frames the audio signal is partitioned into. size(audioIn,1),
WindowLength, and OverlapLength determine M.

• N is the number of channels such that N = size(audioIn,2).

Trailing singleton dimensions are removed from the output S.
Data Types: single | double

F — Center frequencies of mel bandpass filters (Hz)
row vector

2 Functions in Audio Toolbox

2-12

Center frequencies of mel bandpass filters in Hz, returned as a row vector with length
size(S,1).
Data Types: single | double

T — Location of each window of audio (s)
row vector

Location of each analysis window of audio in seconds, returned as a row vector length
size(S,2). The location corresponds to the center of each window.
Data Types: single | double

Algorithms
The melSpectrogram function follows the general algorithm to compute a mel
spectrogram as described in [1].

In this algorithm, the audio input is first buffered into frames of WindowLength number
of samples. The frames are overlapped by OverlapLength number of samples. A
periodic hamming window is applied to each frame, and then the frame is converted to
frequency-domain representation with FFTLength number of points. The frequency-
domain representation can be either magnitude or power, specified by SpectrumType.

 melSpectrogram

2-13

Each frame of the frequency-domain representation passes through a mel filter bank. The
spectral values output from the mel filter bank are summed, and then the channels are
concatenated so that each frame is transformed to a NumBands-element column vector.

Filter Bank Design
The mel filter bank is designed as half-overlapped triangular filters equally spaced on the
mel scale. NumBands controls the number of mel bandpass filters. FrequencyRange
controls the band edges of the first and last filters in the mel filter bank. The filters are
normalized by their bandwidths, so that if white noise is input to the system, each filter
outputs an equal amount of energy.

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital

Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

2 Functions in Audio Toolbox

2-14

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gtcc | mdct | mfcc | spectrogram

Topics
“Speech Command Recognition Using Deep Learning”

Introduced in R2019a

 melSpectrogram

2-15

kbdwin
Kaiser-Bessel-derived window

Syntax
wdw = kbdwin(N)
wdw = kbdwin(N,Beta)

Description
wdw = kbdwin(N) returns an N-point Kaiser-Bessel-derived (KBD) window.

wdw = kbdwin(N,Beta) specifies the tuning parameter, Beta.

Examples

Create Kaiser-Bessel-Derived Window

Create a 1024-point Kaiser-Bessel-derived (KBD) window. Visualize the KBD window in
the time and frequency domains using wvtool.

wdw = kbdwin(1024);
wvtool(wdw)

2 Functions in Audio Toolbox

2-16

Effect of Tuning Parameter Beta

Create three 512-point KBD windows, with Beta set to 1, 10, and 100. Display the
windows for comparison using wvtool.

N = 512;
beta1 = kbdwin(N,1);
beta10 = kbdwin(N,10);
beta100 = kbdwin(N,100);

wvtool(beta1,beta10,beta100)

 kbdwin

2-17

Input Arguments
N — Number of points in KBD window
even positive integer scalar

Number of points in the KBD window, specified as an even positive integer scalar.
Data Types: single | double

Beta — Tuning parameter
5 (default) | nonnegative real scalar

Tuning parameter, specified as a nonnegative real scalar. If unspecified, Beta defaults to
5.

2 Functions in Audio Toolbox

2-18

Data Types: single | double

Output Arguments
wdw — Kaiser-Bessel-derived window
N-point column vector

Kaiser-Bessel-derived window, returned as an N-point column vector.

Algorithms
The coefficients of a Kaiser-Bessel-derived window are computed using the equation:

wdw[n] =

∑i = 1
n w[i]

∑i = 1
N 2 + 1w[i]

if 1 ≤ n < N 2

∑i = 1
N − nw[i]

∑i = 1
N 2 + 1w[i]

if N 2 + 1 ≤ n < N

where w is a Kaiser window designed using the kaiser function:

w = kaiser(N/2+1,Beta*pi)

where N is the number of points in the KBD window and Beta is the tuning parameter.

References
[1] Bosi, Marina, and Richard E. Goldberg. Introduction to Digital Audio Coding and

Standards. Dordrecht: Kluwer, 2003.

 kbdwin

2-19

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
kaiser | mdct | window

Introduced in R2019a

2 Functions in Audio Toolbox

2-20

mdct
Modified discrete cosine transform

Syntax
Y = mdct(X,win)
Y = mdct(X,win,Name,Value)
[Y,S,Z] = mdct(___)

Description
Y = mdct(X,win) returns the modified discrete cosine transform (MDCT) of X. Before
the MDCT is calculated, X is buffered into 50% overlapping frames that are each
multiplied by the time window win. The function treats each column of X as an
independent channel.

Y = mdct(X,win,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

[Y,S,Z] = mdct(___) returns the modified discrete sine transform (MDST), S, and
the odd discrete Fourier transform (ODFT), Z.

Examples

Calculate MDCT

Read in an audio file and then calculate the MDCT using a 1024-point Kaiser-Bessel-
derived window.

audioIn = audioread('Counting-16-44p1-mono-15secs.wav');

coef = mdct(audioIn,kbdwin(1024));

Plot the power of the MDCT coefficients over time.

 mdct

2-21

surf(20*log10(coef.^2),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')
axis([0 size(coef,2) 0 size(coef,1)])
colorbar

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the
audio input signal. The signal returned from imdct removes the zero padding added for
perfect reconstruction.

2 Functions in Audio Toolbox

2-22

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the
audio signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time
domain. Plot the original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

 mdct

2-23

You can perform the MDCT and IMDCT without input padding using the PadInput name-
value pair. However, there will be a reconstruction error in the first half-frame and last
half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions in Audio Toolbox

2-24

If you specify an input signal to the mdct that is not a multiple of the window length, then
the input signal is padded with zeros. Pass the original unclipped signal through the
transform pair and compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

 mdct

2-25

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding
from the reconstructed signal, plot the original and reconstructed signal, and then display
the reconstruction error.

figure(4)
y = y(1:size(x,1));

2 Functions in Audio Toolbox

2-26

t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a
dsp.AsyncBuffer to buffer the input stream.

 mdct

2-27

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the

transform pair. Overlap-add the current output from imdct with the previous output,
and log the results. Update the memory.

mem = zeros(N/2,2); % initialize an empty memory

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

2 Functions in Audio Toolbox

2-28

Read in the entire original audio signal. Trim the front and back zero padding from the
reconstructed signal for comparison. Plot one channel of the original and reconstructed
signals and display the reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

 mdct

2-29

Input Arguments
X — Input array
column vector | matrix

Input array, specified as a column vector or matrix. If specified as a matrix, the columns
are treated as independent audio channels.
Data Types: single | double

win — Window applied in time domain
even-length vector

2 Functions in Audio Toolbox

2-30

Window applied in the time domain, specified as an even-length vector. The transform
performed by mdct has the same number of points as win. To enable perfect
reconstruction, use a window that satisfies the Princen-Bradley condition
(wn

2 + wn + N
2 = 1), such as a sine window or kbdwin.

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PadInput',false

PadInput — Flag to pad input array
true (default) | false

Flag to pad input array, specified as the comma-separated pair consisting of 'PadInput'
and true or false. If set to true, zero-padding is added to the input X at both ends to
enable perfect reconstruction. The number of zeros at each end is numel(win)/2.
Data Types: logical

Output Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), returned as a vector, matrix, or 3-D array.
The dimensions of Y are L-by-M-by-N, where:

• L –– Number of points in the frequency-domain representation of each frame, equal to
numel(win)/2.

• M –– Number of frames the input array is partitioned into.

• If PadInput is set to true, M = ceil(2*size(X,1)/numel(win))+1.
• If PadInput is set to false, M = ceil(2*size(X,1)/numel(win))-1.

 mdct

2-31

• N –– Number of channels, equal to size(X,2).

Trailing singleton dimensions are removed from the output Y.
Data Types: single | double

S — Modified discrete sine transform
vector | matrix | 3-D array

Modified discrete sine transform (MDST), returned as a vector, matrix, or 3-D array. The
dimensions of S are the same as the MDCT output, Y.
Data Types: single | double

Z — Half-sided odd discrete Fourier transform
vector | matrix | 3-D array

Half-sided odd discrete Fourier transform (ODFT), returned as a vector, matrix, or 3-D
array of complex numbers. The dimensions of Z are the same as the MDCT output, Y.

To construct the complete (two-sided) ODFT, mirror the half-sided ODFT:
cat(1,Z,conj(flip(Z,1))).
Data Types: single | double
Complex Number Support: Yes

Algorithms
The modified discrete cosine transform is a time-frequency transform. Given an input
signal X and window win, the mdct function performs the following steps for each
independent channel:

1 The frame size is the number of elements in the specified window, N = numel(win).
By default, PadInput is set to true, so the input signal X is padded with N/2 zeros
on the front and back. If the input signal is not divisible by N, additional padding is
added on the back. After padding, the input signal is buffered into 50% overlapped
frames.

2 Each frame of the buffered and padded input signal is multiplied by the window, win.
3 The input is converted into a frequency representation using the modified discrete

cosine transform:

2 Functions in Audio Toolbox

2-32

Y(k) = ∑
n = 0

N − 1
X n cos π

N 2
n +

N 2 + 1
2 k + 1

2 , k = 0, 1, ..., N 2 − 1

To take advantage of the FFT algorithm, the MDCT is calculated by first calculating the
odd DFT:

YO(k) = ∑
n = 0

N − 1
X n e− jπn

N 2k + 1 , k = 0, 1, ..., N − 1

and then calculating the MDCT:

Y(k) = ℜe Yo(k) cos π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

If a second argument is requested from the mdct function, the modified discrete sine
transform (MDST) is also computed and returned:

X(k) = ℑm Xo(k) sin π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank

Designs Based on Time Domain Aliasing Cancellation." IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1987, pp.
2161–2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time
Domain Aliasing Cancellation." IEEE Transactions on Acoustics, Speech, and
Signal Processing. Vol. 34, Issue 5, 1986, pp. 1153–1161.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 mdct

2-33

See Also
imdct | kbdwin | spectrogram

Introduced in R2019a

2 Functions in Audio Toolbox

2-34

imdct
Inverse modified discrete cosine transform

Syntax
X = imdct(Y,win)
X = imdct(Y,win,Name,Value)

Description
X = imdct(Y,win) returns the inverse modified discrete cosine transform (IMDCT) of
Y, followed by multiplication with time window win and overlap-addition of the frames
with 50% overlap.

X = imdct(Y,win,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Examples

Calculate IMDCT

Read in an audio file, convert it to mono, and then plot it.

audioIn = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
audioIn = mean(audioIn,2);

figure(1)
plot(audioIn,'bo')
ylabel('Amplitude')
xlabel('Sample Number')

 imdct

2-35

Calculate the MDCT using a 4096-point sine window. Plot the power of the MDCT
coefficients over time.

N = 4096;
wdw = sin(pi*((1:N)-0.5)/N);

C = mdct(audioIn,wdw);

figure(2)
surf(20*log10(C.*conj(C)),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')

2 Functions in Audio Toolbox

2-36

axis([0 size(C,2) 0 size(C,1)])
colorbar

Transform the representation back to the time domain. Verify the perfect reconstruction
property by computing the mean squared error. Plot the reconstructed signal over the
original signal.

audioReconstructed = imdct(C,wdw);
err = mean((audioIn-audioReconstructed(1:size(audioIn,1),:)).^2)

figure(1)
hold on
plot(audioReconstructed,'r.')

 imdct

2-37

ylabel('Amplitude')
xlabel('Sample Number')

err =

 9.5889e-31

2 Functions in Audio Toolbox

2-38

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the
audio input signal. The signal returned from imdct removes the zero padding added for
perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the
audio signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time
domain. Plot the original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

 imdct

2-39

You can perform the MDCT and IMDCT without input padding using the PadInput name-
value pair. However, there will be a reconstruction error in the first half-frame and last
half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions in Audio Toolbox

2-40

If you specify an input signal to the mdct that is not a multiple of the window length, then
the input signal is padded with zeros. Pass the original unclipped signal through the
transform pair and compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

 imdct

2-41

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding
from the reconstructed signal, plot the original and reconstructed signal, and then display
the reconstruction error.

figure(4)
y = y(1:size(x,1));

2 Functions in Audio Toolbox

2-42

t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a
dsp.AsyncBuffer to buffer the input stream.

 imdct

2-43

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the

transform pair. Overlap-add the current output from imdct with the previous output,
and log the results. Update the memory.

mem = zeros(N/2,2); % initialize an empty memory

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

2 Functions in Audio Toolbox

2-44

Read in the entire original audio signal. Trim the front and back zero padding from the
reconstructed signal for comparison. Plot one channel of the original and reconstructed
signals and display the reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

 imdct

2-45

Input Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), specified as a vector, matrix, or 3-D array.
The dimensions of Y are interpreted as output from the mdct function. If Y is an L-by-M-
by-N array, the dimensions are interpreted as:

• L –– Number of points in the frequency-domain representation of each frame. L must
be half the number of points in the window, win.

2 Functions in Audio Toolbox

2-46

• M –– Number of frames.
• N –– Number of channels.

Data Types: single | double

win — Window applied in time domain
vector

Window applied in the time domain, specified as vector. The length of win must be twice
the number of rows of Y: numel(win)==2*size(Y,1). To enable perfect reconstruction,
use the same window used in the forward transformation mdct.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PadInput',false

PadInput — Flag if input was padded
true (default) | false

Flag if input to the forward mdct was padded. If set to true, the output is truncated at
both ends to remove the zero-padding that the forward mdct added.
Data Types: logical

Output Arguments
X — Inverse modified discrete cosine transform
column vector | matrix

Inverse modified discrete cosine transform (IMDCT) of input array Y, returned as a
column vector or matrix of independent channels.
Data Types: single | double

 imdct

2-47

Algorithms
The inverse modified discrete cosine transform is a time-frequency transform. Given a
frequency domain input signal Y and window win, the imdct function performs the
follows steps for each independent channel:

1 Each frame of the input is converted into a time-domain representation:

X(n) = ∑
k = 0

N
2 − 1

Y k cos π
N 2

n +
N 2 + 1

2 k + 1
2 , n = 0, 1, ..., N − 1

where N is the number of elements in win.
2 Each frame of the time-domain signal is multiplied by the window, win.
3 The frames are overlap-added with 50% overlap to construct a contiguous time-

domain signal. If PadInput is set to true, the imdct function assumes the original
input signal in the forward transform (mdct) was padded with N/2 zeros on the front
and back and removes the padding. By default, PadInput is set to true.

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank

Designs Based on Time Domain Aliasing Cancellation." IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1987, pp.
2161–2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time
Domain Aliasing Cancellation." IEEE Transactions on Acoustics, Speech, and
Signal Processing. Vol. 34, Issue 5, 1986, pp. 1153–1161.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions in Audio Toolbox

2-48

See Also
kbdwin | mdct | spectrogram

Introduced in R2019a

 imdct

2-49

harmonicRatio
Harmonic ratio

Syntax
hr = harmonicRatio(audioIn,fs)
hr = harmonicRatio(audioIn,fs,Name,Value)

Description
hr = harmonicRatio(audioIn,fs) returns the harmonic ratio of the signal,
audioIn, over time. Columns of the input are treated as individual channels.

hr = harmonicRatio(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: hr =
harmonicRatio(audioIn,fs,'Window',rectwin(round(fs*0.1)),'OverlapLen
gth',round(fs*0.05)) returns the harmonic ratio for the audio input signal sampled
at fs Hz. The harmonic ratio is calculated for 100 ms rectangular windows with 50 ms
overlap.

Examples

Calculate Harmonic Ratio

Read in an audio file, calculate the harmonic ratio using default parameters, and then plot
the results.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
audioInMono = mean(audioIn,2);

hr = harmonicRatio(audioInMono,fs);

2 Functions in Audio Toolbox

2-50

t = (0:length(audioInMono)-1)/fs;
subplot(2,1,1)
plot(t,audioInMono)
ylabel('Amplitude')

t = linspace(0,size(audioInMono,1)/fs,size(hr,1));
subplot(2,1,2)
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')

 harmonicRatio

2-51

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the harmonic ratio of the audio file using 50 ms Hann windows with 25 ms
overlap. Plot the results.

hr = harmonicRatio(audioIn,fs, ...
 'Window',hann(round(fs.*0.05),'periodic'), ...
 'OverlapLength',round(fs.*0.025));

t = linspace(0,size(audioIn,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')

2 Functions in Audio Toolbox

2-52

The harmonic ratio indicates the ratio of energy in the harmonic portion of audio to the
total energy of the audio. Because the audio signal in this example has regions of near
silence, where the total energy is very low, the harmonic ratio does a poor job
discriminating between regions of speech and regions of silence. Add white noise to the
audio signal and then calculate and plot the harmonic ratio.

audioIn = audioIn + 0.1*randn(size(audioIn));
hr = harmonicRatio(audioIn,fs, ...
 'Window',hann(round(fs.*0.05),'periodic'), ...
 'OverlapLength',round(fs.*0.025));

t = linspace(0,size(audioIn,1)/fs,size(hr,1));
plot(t,hr)

 harmonicRatio

2-53

xlabel('Time (s)')
ylabel('Harmonic Ratio')

Calculate Harmonic Ratio of Streaming Audio

Create a dsp.AudioFileReader object to read in stereo audio data frame-by-frame.
Create a dsp.SignalSink object to log the harmonic ratio calculation.

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
logger = dsp.SignalSink;

In an audio stream loop:

2 Functions in Audio Toolbox

2-54

1 Read in a frame of audio data.
2 Calculate the harmonic ratio for each channel of the frame of audio.
3 Log the harmonic ratio for later plotting.

To calculate the harmonic ratio for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame,'periodic');
while ~isDone(fileReader)
 audioIn = fileReader();

 hr = harmonicRatio(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(hr)
end

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

 harmonicRatio

2-55

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent
samples-per-frame with the analysis window size of harmonicRatio, or if you want to
calculate the harmonic ratio of overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Calculate the harmonic ratio using 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

2 Functions in Audio Toolbox

2-56

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 hr = harmonicRatio(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(hr)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

 harmonicRatio

2-57

Harmonic Ratio of Tones and White Noise

The harmonic ratio measures the amount of energy in the tonal part of the signal
compared to the amount of energy in the total signal.

Harmonic Ratio of Pure Tone

Create a pure tone and then calculate the harmonic ratio using default parameters. By
default, the harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops.
Plot the results. The harmonic ratio is near 1, which is the theoretical maximum.

2 Functions in Audio Toolbox

2-58

fs = 48e3;
osc = audioOscillator('Frequency',500, ...
 'SamplesPerFrame',192e3,'SampleRate',fs);
sinewave = osc();

hr = harmonicRatio(sinewave,fs);

t = linspace(0,size(sinewave,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')
title('Sinusoid - Default Parameters')

 harmonicRatio

2-59

The short-time analysis required for windowing lowers the harmonic ratio from the
theoretical value of 1. To diminish the effect of windowing, you can increase the window
size. Use a 100 ms Hamming window and a 10 ms hop, and observe that the harmonic
ratio is closer to one than when using the default window length.

win = hamming(round(fs*0.1),'periodic');
overlap = round(fs*0.099);

hr = harmonicRatio(sinewave,fs,'Window',win,'OverlapLength',overlap);

t = linspace(0,size(sinewave,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')
title('Sinusoid - 100 ms Window')

2 Functions in Audio Toolbox

2-60

Harmonic Ratio of White Noise

Create 5 seconds of white noise and then calculate the harmonic ratio using default
parameters. By default, the harmonic ratio is calculated for 30 ms Hamming windows
with 10 ms hops. Plot the results. The harmonic ratio is 0.

fs = 48e3;
noise = rand(fs*5,1);

hr = harmonicRatio(noise,fs);

t = linspace(0,size(noise,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')

 harmonicRatio

2-61

ylabel('Harmonic Ratio')
title('Noise - Default Parameters')

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If specified as a matrix,
harmonicRatio treats the columns of the matrix as individual audio channels.
Data Types: single | double

2 Functions in Audio Toolbox

2-62

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
hamming(round(fs*0.03),'periodic') (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range [1,
size(audioIn,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(fs*0.02) (default) | nonnegative integer scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

Output Arguments
hr — Harmonic ratio
scalar | vector | matrix

Harmonic ratio, returned as a scalar, vector, or matrix. Each row of hr corresponds to the
harmonic ratio of a window of audioIn. The harmonic ratio is returned with values in the

 harmonicRatio

2-63

range [0,1]. A value of 0 represents low harmonicity, and a value of 1 represents high
harmonicity.
Data Types: single | double

Algorithms
The harmonic ratio is calculated as described in [1]. The following algorithm is applied
independently to each window of audio data. The normalized autocorrelation of the signal
is determined as:

Γ(m) =
∑

n = 1

N
s n s n−m

∑
n = 1

N
s n 2 ∑

n = 0

N
s(n−m)2

for 1 ≤ m ≤ M

where

• s is a single frame of audio data with N elements.
• M is the maximum lag in the calculation. The maximum lag is 40 ms, which

corresponds to a minimum fundamental frequency of 25 Hz.

A first estimate of the harmonic ratio is determined as the maximum of the normalized
autocorrelation, within a given range:

βHR =
max

M0 ≤ m ≤ M Γ(m)

where M0 is the lower edge of the search range, determined as the first zero crossing of
the normalized autocorrelation.

Finally, the harmonic ratio estimate is improved using parabolic interpolation, as
described in [2].

References
[1] Kim, Hyoung-Gook, Nicholas Moreau, and Thomas Sikora. MPEG-7 Audio and Beyond:

Audio Content Indexing and Retrieval. John Wiley & Sons, 2005.

2 Functions in Audio Toolbox

2-64

[2] Quadratic Interpolation of Spectral Peaks. Accessed October 11, 2018. https://
ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pitch | spectralCentroid | voiceActivityDetector

Introduced in R2019a

 harmonicRatio

2-65

gtcc
Extract gammatone cepstral coefficients, log-energy, delta, and delta-delta

Syntax
coeffs = gtcc(audioIn,fs)
coeffs = gtcc(___ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = gtcc(___)

Description
coeffs = gtcc(audioIn,fs) returns the gammatone cepstral coefficients (GTCCs) for
the audio input, sampled at a frequency of fs Hz.

coeffs = gtcc(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

[coeffs,delta,deltaDelta,loc] = gtcc(___) returns the delta, delta-delta, and
location in samples corresponding to each window of data. This output syntax can be used
with any of the previous input syntaxes.

Examples

Extract GTCC from Audio Signal

Get the gammatone cepstral coefficients for an audio file using default settings. Plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[coeffs,~,~,loc] = gtcc(audioIn,fs);

t = loc./fs;

2 Functions in Audio Toolbox

2-66

plot(t,coeffs)
xlabel('Time (s)')
title('Gammatone Cepstral Coefficients')
legend('logE','0','1','2','3','4','5','6','7','8','9','10','11','12', ...
 'Location','northeastoutside')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

 gtcc

2-67

Calculate 20 GTCC using filters equally spaced on the ERB scale between hz2erb(62.5)
and hz2erb(12000). Calculate the coefficients using 50 ms windows with 25 ms overlap.
Replace the 0th coefficient with the log-energy. Use time-domain filtering.

[coeffs,~,~,loc] = gtcc(audioIn,fs, ...
 'NumCoeffs',20, ...
 'FrequencyRange',[62.5,12000], ...
 'WindowLength',round(0.05*fs), ...
 'OverlapLength',round(0.025*fs), ...
 'LogEnergy','Replace', ...
 'FilterDomain','Time');

Plot the results.

t = loc./fs;

plot(t,coeffs)
xlabel('Time (s)')
title('Gammatone Cepstral Coefficients')
legend('logE','1','2','3','4','5','6','7','8','9','10','11','12','13', ...
 '14','15','16','17','18','19','Location','northeastoutside');

2 Functions in Audio Toolbox

2-68

Input Arguments
audioIn — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If specified as a matrix, gtcc treats the
columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

 gtcc

2-69

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: coeffs = gtcc(audioIn,fs,'LogEnergy','Replace') returns
gammatone cepstral coefficients for the audio input signal sampled at fs Hz. For each
analysis window, the first coefficient in the coeffs vector is replaced with the log energy
of the input signal.

WindowLength — Number of samples in analysis window
round(0.03*fs) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as the
comma-separated pair consisting of 'WindowLength' and an integer in the range [2,
size(audioIn,1)]. If unspecified, WindowLength defaults to round(0.03*fs).
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.02*fs) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
WindowLength). If unspecified, OverlapLength defaults to round(0.02*fs).
Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as the comma-
separated pair consisting of 'NumCoeffs' and an integer in the range [2, v]. v is the
number of valid passbands. If unspecified, NumCoeffs defaults to 13.

2 Functions in Audio Toolbox

2-70

The number of valid passbands is defined as the number of ERB steps (ERBN) in the
frequency range of the filter bank. The frequency range of the filter bank is specified by
FrequencyRange.
Data Types: single | double

FilterDomain — Domain in which to apply filtering
'Frequency' (default) | 'Time'

Domain in which to apply filtering, specified as the comma-separated pair consisting of
'FilterDomain' and 'Frequency' or 'Time'. If unspecified, FilterDomain defaults
to Frequency.
Data Types: string | char

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 fs/2] (default) | two-element row vector

Frequency range of gammatone filter bank in Hz, specified as the comma-separated pair
consisting of 'FrequencyRange' and a two-element row vector of increasing values in
the range [0, fs/2]. If unspecified, FrequencyRange defaults to [50, fs/2]
Data Types: single | double

FFTLength — Number of bins in DFT
WindowLength (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to WindowLength.
Data Types: single | double

DeltaWindowLength — Number of coefficients used to calculate delta and delta-
delta
2 (default) | odd integer greater than two

Number of coefficients used to calculate the delta and the delta-delta values, specified as
the comma-separated pair consisting of 'DeltaWindowLength' and two or an odd
integer greater than two. If unspecified, DeltaWindowLength defaults to 2.

If DeltaWindowLength is set to 2, the delta is given by the difference between the
current coefficients and the previous coefficients.

 gtcc

2-71

If DeltaWindowLength is set to an odd integer greater than 2, the following equation
defines their values:

delta

k coeffs k

k

k M

M

k M

M
=

◊
=-

=-

Â

Â

(,:)

2

The function uses a least-squares approximation of the local slope over a region around
the coefficients of the current analysis window. The delta cepstral values are computed by
fitting the cepstral coefficients of neighboring analysis windows (M analysis windows
before the current analysis window and M analysis windows after the current analysis
window) to a straight line. For details, see [1].
Data Types: single | double

LogEnergy — Log energy usage
'Append' (default) | 'Replace' | 'Ignore'

Log energy usage, specified as the comma-separated pair consisting of 'LogEnergy' and
'Append', 'Replace', or 'Ignore'. If unspecified, LogEnergy defaults to Append.

• 'Append' –– The function prepends the log energy to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The function replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The function does not calculate or return the log energy.

Data Types: char | string

Output Arguments
coeffs — Gammatone cepstral coefficients
matrix | array

Gammatone cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array,
where:

2 Functions in Audio Toolbox

2-72

• L –– Number of analysis windows the audio signal is partitioned into. The input size,
WindowLength, and OverlapLength control this dimension: L =
floor((size(audioIn,1) − WindowLength))/(WindowLength −
OverlapLength) + 1.

• M –– Number of coefficients returned per frame. This value is determined by
NumCoeffs and LogEnergy.

When LogEnergy is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector.
The length of the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy. The length of
the coefficients vector is NumCoeffs.

• N –– Number of input channels (columns). This value is size(audioIn,2).

Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one analysis window to another, returned as an L-by-M matrix
or an L-by-M-by-N array. The delta array is the same size and data type as the coeffs
array. See coeffs for the definitions of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values, returned as an L-by-M matrix or an L-by-M-by-N array. The
deltaDelta array is the same size and data type as the coeffs and delta arrays. See
coeffs for the definitions of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].
Data Types: single | double

 gtcc

2-73

loc — Location of the last sample in each analysis window
column vector

Location of last sample in each analysis window, returned as a column vector with the
same number of rows as coeffs.
Data Types: single | double

Algorithms
The gtcc function splits the entire data into overlapping segments. The length of each
analysis window is determined by WindowLength. The length of overlap between analysis
windows is determined by OverlapLength. The algorithm to determine the gammatone
cepstral coefficients depends on the filter domain, specified by FilterDomain. The
default filter domain is frequency.

Frequency-Domain Filtering
gtcc computes the gammatone cepstral coefficients, log energy values, delta, and delta-
delta values for each analysis window as per the algorithm described in
cepstralFeatureExtractor.

Time-Domain Filtering
If FilterDomain is specified as 'Time', the gtcc function uses the
gammatoneFilterBank to apply time-domain filtering. The basic steps of the gtcc
algorithm are outlined by the diagram.

2 Functions in Audio Toolbox

2-74

The FrequencyRange and sample rate (fs) parameters are set on the filter bank using
the name-value pairs input to the gtcc function. The number of filters in the gammatone
filter bank is defined as hz2erb(FrequencyRange(2)) −
hz2erb(FrequencyRange(1)).This roughly corresponds to placing a gammatone filter
every 0.9 mm in the cochlea.

The output from the gammatone filter bank is a multichannel signal. Each channel output
from the gammatone filter bank is buffered into overlapped analysis windows, as specified
by WindowLength and OverlapLength. Then a periodic Hamming window is applied to
each analysis window. The energy for each analysis window of data is calculated. The STE
of the channels are concatenated. The concatenated signal is then passed through a
logarithm function and transformed to the cepstral domain using a discrete cosine
transform (DCT).

The log-energy is calculated on the original audio signal using the same buffering scheme
applied to the gammatone filter bank output.

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital

Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

[2] Shao, Yang, Zhaozhang Jin, Deliang Wang, and Soundararajan Srinivasan. "An
Auditory-Based Feature for Robust Speech Recognition." IEEE International
Conference on Acoustics, Speech and Signal Processing. 2009.

 gtcc

2-75

[3] Valero, X., and F. Alias. "Gammatone Cepstral Coefficients: Biologically Inspired
Features for Non-Speech Audio Classification." IEEE Transactions on Multimedia.
Vol. 14, Issue 6, 2012, pp. 1684–1689.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cepstralFeatureExtractor | mfcc | pitch | voiceActivityDetector

Introduced in R2019a

2 Functions in Audio Toolbox

2-76

spectralSpread
Spectral spread for audio signals and auditory spectrograms

Syntax
spread = spectralSpread(x,f)
spread = spectralSpread(x,f,Name,Value)
[spread,centroid] = spectralSpread(___)

Description
spread = spectralSpread(x,f) returns the spectral spread of the signal, x, over
time. How the function interprets x depends on the shape of f.

spread = spectralSpread(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

[spread,centroid] = spectralSpread(___) returns the spectral centroid.

Examples

Spectral Spread of Time-Domain Audio

Read in an audio file, calculate the spread using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
spread = spectralSpread(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread (Hz)')

 spectralSpread

2-77

Spectral Spread of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the spread of the mel spectrums over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

spread = spectralSpread(s,cf);

plot(t,spread)

2 Functions in Audio Toolbox

2-78

xlabel('Time (s)')
ylabel('Spread (Hz)')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the spread of the power spectrum over time. Calculate the spread for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the spread calculation. Plot the results.

 spectralSpread

2-79

spread = spectralSpread(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread (Hz)')

2 Functions in Audio Toolbox

2-80

Calculate Spectral Spread of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral spread calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral spread for the frame of audio.
3 Log the spectral spread for later plotting.

To calculate the spectral spread for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 spread = spectralSpread(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)
end

plot(logger.Buffer)
ylabel('Spread (Hz)')

 spectralSpread

2-81

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralSpread.
• You want to calculate the spectral spread for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral spread is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-82

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 spread = spectralSpread(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Spread (Hz)')

 spectralSpread

2-83

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-84

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralSpread

2-85

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral spread is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral spread is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
spread — Spectral spread (Hz)
scalar | vector | matrix

2 Functions in Audio Toolbox

2-86

Spectral spread in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral spread of a window of x. Each column of spread corresponds
to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms
The spectral spread is calculated as described in [1]:

spread =
∑

k = b1

b2
fk− μ1

2sk

∑
k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid

function.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

 spectralSpread

2-87

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralKurtosis | spectralSkewness

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-88

spectralSlope
Spectral slope for audio signals and auditory spectrograms

Syntax
slope = spectralSlope(x,f)
slope = spectralSlope(x,f,Name,Value)

Description
slope = spectralSlope(x,f) returns the spectral slope of the signal, x, over time.
How the function interprets x depends on the shape of f.

slope = spectralSlope(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Slope of Time-Domain Audio

Read in an audio file, calculate the slope using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
slope = spectralSlope(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(slope,1));
plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

 spectralSlope

2-89

Spectral Slope of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the slope of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

slope = spectralSlope(s,cf);

plot(t,slope)

2 Functions in Audio Toolbox

2-90

xlabel('Time (s)')
ylabel('Slope')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the slope of the magnitude spectrum over time. Calculate the slope for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the slope calculation. Plot the results.

 spectralSlope

2-91

slope = spectralSlope(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(slope,1));
plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

2 Functions in Audio Toolbox

2-92

Calculate Spectral Slope of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral slope calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral slope for the frame of audio.
3 Log the spectral slope for later plotting.

To calculate the spectral slope for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 slope = spectralSlope(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)
end

plot(logger.Buffer)
ylabel('Slope')

 spectralSlope

2-93

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralSlope.
• You want to calculate the spectral slope for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral slope is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-94

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 slope = spectralSlope(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Slope')

 spectralSlope

2-95

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-96

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralSlope

2-97

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'magnitude' (default) | 'power'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral slope is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral slope is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
slope — Spectral slope
scalar | vector | matrix

2 Functions in Audio Toolbox

2-98

Spectral slope in Hz, returned as a scalar, vector, or matrix. Each row of slope
corresponds to the spectral slope of a window of x. Each column of slope corresponds to
an independent channel.

Algorithms
The spectral slope is calculated as described in [1]:

slope =
∑

k = b1

b2
fk− μf sk− μS

∑
k = b1

b2
fk− μf

2

where

• fk is the frequency in Hz corresponding to bin k.
• μf is the mean frequency.
• sk is the spectral value at bin k.
• μs is the mean spectral value.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral slope.

References
[1] Lerch, Alexander. An Introduction to Audio Content Analysis Applications in Signal

Processing and Music Informatics. Piscataway, NJ: IEEE Press, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 spectralSlope

2-99

See Also
spectralCrest | spectralDecrease

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-100

spectralSkewness
Spectral skewness for audio signals and auditory spectrograms

Syntax
skewness = spectralSkewness(x,f)
skewness = spectralSkewness(x,f,Name,Value)
[skewness,spread,centroid] = spectralSkewness(___)

Description
skewness = spectralSkewness(x,f) returns the spectral skewness of the signal, x,
over time. How the function interprets x depends on the shape of f.

skewness = spectralSkewness(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

[skewness,spread,centroid] = spectralSkewness(___) returns the spectral
spread and spectral centroid.

Examples

Spectral Skewness of Time-Domain Audio

Read in an audio file, calculate the skewness using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
skewness = spectralSkewness(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(skewness,1));
plot(t,skewness)
xlabel('Time (s)')
ylabel('Skewness')

 spectralSkewness

2-101

Spectral Skewness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the skewness of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

skewness = spectralSkewness(s,cf);

plot(t,skewness)

2 Functions in Audio Toolbox

2-102

xlabel('Time (s)')
ylabel('Skewness')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the skewness of the power spectrum over time. Calculate the skewness for 50
ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the skewness calculation. Plot the results.

 spectralSkewness

2-103

skewness = spectralSkewness(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(skewness,1));
plot(t,skewness)
xlabel('Time (s)')
ylabel('Skewness')

2 Functions in Audio Toolbox

2-104

Calculate Spectral Skewness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral skewness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral skewness for the frame of audio.
3 Log the spectral skewness for later plotting.

To calculate the spectral skewness for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 skewness = spectralSkewness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)
end

plot(logger.Buffer)
ylabel('Skewness')

 spectralSkewness

2-105

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralSkewness.
• You want to calculate the spectral skewness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral skewness is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-106

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 skewness = spectralSkewness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Skewness')

 spectralSkewness

2-107

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-108

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralSkewness

2-109

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral skewness is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral skewness is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
skewness — Spectral skewness
scalar | vector | matrix

2 Functions in Audio Toolbox

2-110

Spectral skewness, returned as a scalar, vector, or matrix. Each row of skewness
corresponds to the spectral skewness of a window of x. Each column of skewness
corresponds to an independent channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds
to the spectral spread of a window of x. Each column of spread corresponds to an
independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms
The spectral skewness is calculated as described in [1]:

skewness =
∑

k = b1

b2
fk− μ1

3sk

μ2
3 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid

function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

 spectralSkewness

2-111

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralKurtosis | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-112

spectralRolloffPoint
Spectral rolloff point for audio signals and auditory spectrograms

Syntax
rolloffPoint = spectralRolloffPoint(x,f)
rolloffPoint = spectralRolloffPoint(x,f,Name,Value)

Description
rolloffPoint = spectralRolloffPoint(x,f) returns the spectral rolloff point of
the signal, x, over time. How the function interprets x depends on the shape of f.

rolloffPoint = spectralRolloffPoint(x,f,Name,Value) specifies options using
one or more Name,Value pair arguments.

Examples

Spectral Rolloff Point of Time-Domain Audio

Read in an audio file, calculate the rolloff point using default parameters, and then plot
the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
rolloffPoint = spectralRolloffPoint(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)
xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

 spectralRolloffPoint

2-113

Spectral Rolloff Point of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the rolloff point of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

rolloffPoint = spectralRolloffPoint(s,cf);

plot(t,rolloffPoint)

2 Functions in Audio Toolbox

2-114

xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the rolloff point of the power spectrum over time. Calculate the rolloff point for
50 ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2
for the rolloff point calculation. Plot the results.

 spectralRolloffPoint

2-115

rolloffPoint = spectralRolloffPoint(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)
xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

2 Functions in Audio Toolbox

2-116

Calculate Spectral Rolloff Point of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral rolloff point calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral rolloff point for the frame of audio.
3 Log the spectral rolloff point for later plotting.

To calculate the spectral rolloff point for only a given input frame, specify a window with
the same number of samples as the input, and set the overlap length to zero. Plot the
logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 rolloffPoint = spectralRolloffPoint(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)
end

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

 spectralRolloffPoint

2-117

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralRolloffPoint.
• You want to calculate the spectral rolloff point for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral rolloff point is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-118

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 rolloffPoint = spectralRolloffPoint(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

 spectralRolloffPoint

2-119

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-120

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Threshold — Threshold of rolloff point
0.95 (default) | scalar in the range (0,1)

Threshold of rolloff point, specified as the comma-separated pair consisting of
'Threshold' and a scalar between zero and one, exclusive.
Data Types: single | double

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range

 spectralRolloffPoint

2-121

[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral rolloff point is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral rolloff point is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

2 Functions in Audio Toolbox

2-122

Output Arguments
rolloffPoint — Spectral rolloff point (Hz)
scalar | vector | matrix

Spectral rolloff point in Hz, returned as a scalar, vector, or matrix. Each row of
rolloffPoint corresponds to the spectral rolloff point of a window of x. Each column of
rolloffPoint corresponds to an independent channel.

Algorithms
The spectral rolloff point is calculated as described in [1]:

rolloffPoint = i

such that

∑
k = b1

i
sk = κ ∑

k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• κ is the percentage of total energy contained between b1 and i. You can set κ using

Threshold.

References
[1] Scheirer, E., and M. Slaney, "Construction and Evaluation of a Robust Multifeature

Speech/Music Discriminator," IEEE International Conference on Acoustics,
Speech, and Signal Processing. Volume 2, 1997, pp. 1221–1224.

 spectralRolloffPoint

2-123

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-124

spectralKurtosis
Spectral kurtosis for audio signals and auditory spectrograms

Syntax
kurtosis = spectralKurtosis(x,f)
kurtosis = spectralKurtosis(x,f,Name,Value)
[kurtosis,spread,centroid] = spectralKurtosis(___)

Description
kurtosis = spectralKurtosis(x,f) returns the spectral kurtosis of the signal, x,
over time. How the function interprets x depends on the shape of f.

kurtosis = spectralKurtosis(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

[kurtosis,spread,centroid] = spectralKurtosis(___) returns the spectral
spread and spectral centroid.

Examples

Spectral Kurtosis of Time-Domain Audio

Read in an audio file, calculate the kurtosis using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
kurtosis = spectralKurtosis(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

 spectralKurtosis

2-125

Spectral Kurtosis of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the kurtosis of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

kurtosis = spectralKurtosis(s,cf);

plot(t,kurtosis)

2 Functions in Audio Toolbox

2-126

xlabel('Time (s)')
ylabel('Kurtosis')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the kurtosis of the power spectrum over time. Calculate the kurtosis for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the kurtosis calculation. Plot the results.

 spectralKurtosis

2-127

kurtosis = spectralKurtosis(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

2 Functions in Audio Toolbox

2-128

Calculate Spectral Kurtosis of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral kurtosis calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral kurtosis for the frame of audio.
3 Log the spectral kurtosis for later plotting.

To calculate the spectral kurtosis for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 kurtosis = spectralKurtosis(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)
end

plot(logger.Buffer)
ylabel('Kurtosis')

 spectralKurtosis

2-129

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralKurtosis.
• You want to calculate the spectral kurtosis for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral kurtosis is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-130

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 kurtosis = spectralKurtosis(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Kurtosis')

 spectralKurtosis

2-131

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-132

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralKurtosis

2-133

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral kurtosis is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral kurtosis is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
kurtosis — Spectral kurtosis
scalar | vector | matrix

2 Functions in Audio Toolbox

2-134

Spectral kurtosis, returned as a scalar, vector, or matrix. Each row of kurtosis
corresponds to the spectral kurtosis of a window of x. Each column of kurtosis
corresponds to an independent channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds
to the spectral spread of a window of x. Each column of spread corresponds to an
independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms
The spectral kurtosis is calculated as described in [1]:

kurtosis =
∑

k = b1

b2
fk− μ1

4sk

μ2
4 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid

function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

 spectralKurtosis

2-135

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-136

spectralFlux
Spectral flux for audio signals and auditory spectrograms

Syntax
flux = spectralFlux(x,f)
flux = spectralFlux(x,f,Name,Value)

Description
flux = spectralFlux(x,f) returns the spectral flux of the signal, x, over time. How
the function interprets x depends on the shape of f.

flux = spectralFlux(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Flux of Time-Domain Audio

Read in an audio file, calculate the flux using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
flux = spectralFlux(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(flux,1));
plot(t,flux)
xlabel('Time (s)')
ylabel('Flux')

 spectralFlux

2-137

Spectral Flux of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function. Calculate the flux of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

flux = spectralFlux(s,cf);

plot(t,flux)

2 Functions in Audio Toolbox

2-138

xlabel('Time (s)')
ylabel('Flux')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the flux of the power spectrum over time. Calculate the flux for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flux
calculation. Plot the results.

 spectralFlux

2-139

flux = spectralFlux(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(flux,1));
plot(t,flux)
xlabel('Time (s)')
ylabel('Flux')

2 Functions in Audio Toolbox

2-140

Calculate Spectral Flux of Streaming Audio

Spectral flux measures the change in consecutive spectrums. To calculate spectral flux for
a streaming audio signal, you must input at least two frames of audio data.

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.AsyncBuffer to buffer audio into overlapped frames. Create a dsp.SignalSink to
log the spectral flux calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
buff = dsp.AsyncBuffer;
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data from your source.
2 Write the audio data to a dsp.AsyncBuffer
3 If a frame of data is available from the buffer, read a frame and one hop of data, with

overlap equal to samples per frame. This represents the two most recent audio
frames.

4 Calculate the spectral flux for the two most recent audio frames.
5 Log the spectral flux for later plotting. Because flux is defined by a current frame and

a previous frame, and because the condition before the first frame is unknown to the
function, spectral flux outputs a flux of zero for the first frame. Log only the second
value output from spectralFlux.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame+samplesPerHop,samplesPerFrame);
 flux = spectralFlux(audioBuffered,fs, ...

 spectralFlux

2-141

 'Window',win, ...
 'OverlapLength',samplesOverlap);
 logger(flux(end))
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flux')

2 Functions in Audio Toolbox

2-142

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

 spectralFlux

2-143

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

NormType — Norm type
2 (default) | 1

Norm type used to calculate, specified as the comma-separated pair consisting of
'NormType' and 2 or 1.
Data Types: single | double

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range

2 Functions in Audio Toolbox

2-144

[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral flux is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral flux is calculated for the one-sided magnitude spectrum.

Data Types: char | string

 spectralFlux

2-145

Output Arguments
flux — Spectral flux (Hz)
scalar | vector | matrix

Spectral flux in Hz, returned as a scalar, vector, or matrix. Each row of flux corresponds
to the spectral flux of a window of x. Each column of flux corresponds to an independent
channel.

Algorithms
The spectral flux is calculated as described in [1]:

flux(t) = ∑
k = b1

b2
sk(t) − sk(t − 1) P

1 P

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.
• P is the norm type. You can specify the norm type using NormType.

References
[1] Scheirer, E., and M. Slaney. "Construction and Evaluation of a Robust Multifeature

Speech/Music Discriminator." IEEE International Conference on Acoustics,
Speech, and Signal Processing. Volume 2, 1997, pp. 1221–1224.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions in Audio Toolbox

2-146

See Also
integratedLoudness | spectralCentroid | splMeter

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralFlux

2-147

spectralFlatness
Spectral flatness for audio signals and auditory spectrograms

Syntax
flatness = spectralFlatness(x,f)
flatness = spectralFlatness(x,f,Name,Value)
[flatness,arithmeticMean,geometricMean] = spectralFlatness(___)

Description
flatness = spectralFlatness(x,f) returns the spectral flatness of the signal, x,
over time. How the function interprets x depends on the shape of f.

flatness = spectralFlatness(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

[flatness,arithmeticMean,geometricMean] = spectralFlatness(___)
returns the spectral arithmetic mean and spectral geometric mean.

Examples

Spectral Flatness of Time-Domain Audio

Read in an audio file, calculate the flatness using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
flatness = spectralFlatness(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(flatness,1));
plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

2 Functions in Audio Toolbox

2-148

Spectral Flatness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the flatness of the mel spectrogram over time. Plot the results.

flatness = spectralFlatness(s,cf);

 spectralFlatness

2-149

plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the flatness of the power spectrum over time. Calculate the flatness for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the flatness calculation. Plot the results.

2 Functions in Audio Toolbox

2-150

flatness = spectralFlatness(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(flatness,1));
plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

 spectralFlatness

2-151

Calculate Spectral Flatness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral flatness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral flatness for the frame of audio.
3 Log the spectral flatness for later plotting.

To calculate the spectral flatness for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 flatness = spectralFlatness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)
end

plot(logger.Buffer)
ylabel('Flatness')

2 Functions in Audio Toolbox

2-152

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralFlatness.
• You want to calculate the spectral flatness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral flatness is calculated for 50 ms frames with a 25 ms overlap.

 spectralFlatness

2-153

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 flatness = spectralFlatness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flatness')

2 Functions in Audio Toolbox

2-154

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

 spectralFlatness

2-155

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

2 Functions in Audio Toolbox

2-156

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral flatness is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral flatness is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
flatness — Spectral flatness
scalar | vector | matrix

 spectralFlatness

2-157

Spectral flatness, returned as a scalar, vector, or matrix. Each row of flatness
corresponds to the spectral flatness of a window of x. Each column of flatness
corresponds to an independent channel.

arithmeticMean — Spectral arithmetic mean
scalar | vector | matrix

Spectral arithmetic mean, returned as a scalar, vector, or matrix. Each row of
arithmeticMean corresponds to the arithmetic mean of the spectrum of a window of x.
Each column of arithmeticMean corresponds to an independent channel.

geometricMean — Spectral geometric mean
scalar | vector | matrix

Spectral geometric mean, returned as a scalar, vector, or matrix. Each row of
geometricMean corresponds to the geometric mean of the spectrum of a window of x.
Each column of geometricMean corresponds to an independent channel.

Algorithms
The spectral flatness is calculated as described in [1]:

flatness =
∏

k = b1

b2
sk

1
b2 − b1

1
b2 − b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.

References
[1] Johnston, J.d. "Transform Coding of Audio Signals Using Perceptual Noise Criteria."

IEEE Journal on Selected Areas in Communications. Vol. 6, Number 2, 1988, pp.
314–323.

2 Functions in Audio Toolbox

2-158

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralFlatness

2-159

spectralEntropy
Spectral entropy for audio signals and auditory spectrograms

Syntax
entropy = spectralEntropy(x,f)
entropy = spectralEntropy(x,f,Name,Value)

Description
entropy = spectralEntropy(x,f) returns the spectral entropy of the signal, x, over
time. How the function interprets x depends on the shape of f.

entropy = spectralEntropy(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Entropy of Time-Domain Audio

Read in an audio file, calculate the entropy using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

2 Functions in Audio Toolbox

2-160

Spectral Entropy of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the entropy of the mel spectrogram over time. Plot the results.

entropy = spectralEntropy(s,cf);

 spectralEntropy

2-161

plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the entropy of the power spectrum over time. Calculate the entropy for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the entropy calculation. Plot the results.

2 Functions in Audio Toolbox

2-162

entropy = spectralEntropy(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

 spectralEntropy

2-163

Calculate Spectral Entropy of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral entropy calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral entropy for the frame of audio.
3 Log the spectral entropy for later plotting.

To calculate the spectral entropy for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

while ~isDone(fileReader)
 audioIn = fileReader();
 entropy = spectralEntropy(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(entropy)
end

plot(logger.Buffer)
ylabel('Entropy')

2 Functions in Audio Toolbox

2-164

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralEntropy.
• You want to calculate the spectral entropy for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral entropy is calculated for 50 ms frames with a 25 ms overlap.

 spectralEntropy

2-165

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 entropy = spectralEntropy(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(entropy)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Entropy')

2 Functions in Audio Toolbox

2-166

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

 spectralEntropy

2-167

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

2 Functions in Audio Toolbox

2-168

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral entropy is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral entropy is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
entropy — Spectral entropy
scalar | vector | matrix

 spectralEntropy

2-169

Spectral entropy, returned as a scalar, vector, or matrix. Each row of entropy
corresponds to the spectral entropy of a window of x. Each column of entropy
corresponds to an independent channel.

Algorithms
The spectral entropy is calculated as described in [1]:

entropy =
− ∑

k = b1

b2
sklog sk

log b2− b1

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral entropy.

References
[1] Misra, H., S. Ikbal, H. Bourlard, and H. Hermansky. "Spectral Entropy Based Feature

for Robust ASR." 2004 IEEE International Conference on Acoustics, Speech, and
Signal Processing.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

2 Functions in Audio Toolbox

2-170

Introduced in R2019a

 spectralEntropy

2-171

spectralDecrease
Spectral decrease for audio signals and auditory spectrograms

Syntax
decrease = spectralDecrease(x,f)
decrease = spectralDecrease(x,f,Name,Value)

Description
decrease = spectralDecrease(x,f) returns the spectral decrease of the signal, x,
over time. How the function interprets x depends on the shape of f.

decrease = spectralDecrease(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Spectral Decrease of Time-Domain Audio

Read in an audio file, calculate the decrease using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
decrease = spectralDecrease(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

2 Functions in Audio Toolbox

2-172

Spectral Decrease of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the decrease of the mel spectrogram over time. Plot the results.

decrease = spectralDecrease(s,cf);

 spectralDecrease

2-173

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

2 Functions in Audio Toolbox

2-174

Calculate the decrease of the magnitude spectrum over time. Calculate the decrease for
50 ms Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2
for the decrease calculation. Plot the results.

decrease = spectralDecrease(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

 spectralDecrease

2-175

Calculate Spectral Decrease of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral decrease calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

2 Functions in Audio Toolbox

2-176

2 Calculate the spectral decrease for the frame of audio.
3 Log the spectral decrease for later plotting.

To calculate the spectral decrease for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero. Plot the logged
data.

while ~isDone(fileReader)
 audioIn = fileReader();
 decrease = spectralDecrease(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(decrease)
end

plot(logger.Buffer)
ylabel('Decrease')

 spectralDecrease

2-177

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralDecrease.
• You want to calculate the spectral decrease for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral decrease is calculated for 50 ms frames with a 25 ms overlap.

2 Functions in Audio Toolbox

2-178

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 decrease = spectralDecrease(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(decrease)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Decrease')

 spectralDecrease

2-179

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-180

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralDecrease

2-181

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'magnitude' (default) | 'power'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral decrease is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral decrease is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
decrease — Spectral decrease
scalar | vector | matrix

2 Functions in Audio Toolbox

2-182

Spectral decrease in Hz, returned as a scalar, vector, or matrix. Each row of decrease
corresponds to the spectral centroid of a window of x. Each column of decrease
corresponds to an independent channel.

Algorithms
The spectral decrease is calculated as described in [1]:

decrease =
∑

k = b1 + 1

b2 sk− sb1
k− 1

∑
k = b1 + 1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral decrease.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest | spectralSlope

 spectralDecrease

2-183

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-184

spectralCrest
Spectral crest for audio signals and auditory spectrograms

Syntax
crest = spectralCrest(x,f)
crest = spectralCrest(x,f,Name,Value)
[crest,spectralPeak,spectralMean] = spectralCrest(___)

Description
crest = spectralCrest(x,f) returns the spectral crest of the signal, x, over time.
How the function interprets x depends on the shape of f.

crest = spectralCrest(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

[crest,spectralPeak,spectralMean] = spectralCrest(___) returns the
spectral peak and spectral mean.

Examples

Spectral Crest of Time-Domain Audio

Read in an audio file, calculate the crest using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
crest = spectralCrest(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

 spectralCrest

2-185

Spectral Crest of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram
function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the crest of the mel spectrogram over time. Plot the results.

crest = spectralCrest(s,cf);

2 Functions in Audio Toolbox

2-186

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

 spectralCrest

2-187

Calculate the crest of the power spectrum over time. Calculate the crest for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the crest calculation. Plot the results.

crest = spectralCrest(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

2 Functions in Audio Toolbox

2-188

Calculate Spectral Crest of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral crest calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

 spectralCrest

2-189

2 Calculate the spectral crest for the frame of audio.
3 Log the spectral crest for later plotting.

To calculate the spectral crest for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 crest = spectralCrest(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(crest)
end

plot(logger.Buffer)
ylabel('Crest')

2 Functions in Audio Toolbox

2-190

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the

analysis window of spectralCrest.
• You want to calculate the spectral crest for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral crest is calculated for 50 ms frames with a 25 ms overlap.

 spectralCrest

2-191

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 crest = spectralCrest(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(crest)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Crest (Hz)')

2 Functions in Audio Toolbox

2-192

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

 spectralCrest

2-193

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

2 Functions in Audio Toolbox

2-194

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral crest is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral crest is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
crest — Spectral crest
scalar | vector | matrix

 spectralCrest

2-195

Spectral crest, returned as a scalar, vector, or matrix. Each row of crest corresponds to
the spectral crest of a window of x. Each column of crest corresponds to an independent
channel.

spectralPeak — Spectral peak
scalar | vector | matrix

Spectral peak, returned as a scalar, vector, or matrix. Each row of spectralPeak
corresponds to the spectral crest of a window of x. Each column of spectralPeak
corresponds to an independent channel.

spectralMean — Spectral mean
scalar | vector | matrix

Spectral crest, returned as a scalar, vector, or matrix. Each row of spectralMean
corresponds to the spectral crest of a window of x. Each column of spectralMean
corresponds to an independent channel.

Algorithms
The spectral crest is calculated as described in [1]:

crest =
max sk ∈ [b1, b2]

1
b2 − b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral crest.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

2 Functions in Audio Toolbox

2-196

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralFlatness | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralCrest

2-197

spectralCentroid
Spectral centroid for audio signals and auditory spectrograms

Syntax
centroid = spectralCentroid(x,f)
centroid = spectralCentroid(x,f,Name,Value)

Description
centroid = spectralCentroid(x,f) returns the spectral centroid of the signal, x,
over time. How the function interprets x depends on the shape of f.

centroid = spectralCentroid(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Spectral Centroid of Time-Domain Audio

Read in an audio file, calculate the centroid using default parameters, and then plot the
results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
centroid = spectralCentroid(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

2 Functions in Audio Toolbox

2-198

Spectral Centroid of Frequency-Domain Audio Data

Read in an audio file and then buffer the signal into 30 ms frames with 20 ms overlap.
Calculate the octave power spectrum using the poctave function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
audioBuffered = buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay');
[p,cf] = poctave(audioBuffered,fs);

Calculate the centroid of the octave power spectrum over time. Plot the results.

centroid = spectralCentroid(p,cf);

 spectralCentroid

2-199

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

2 Functions in Audio Toolbox

2-200

Calculate the centroid of the power spectrum over time. Calculate the centroid for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for
the centroid calculation. Plot the results.

centroid = spectralCentroid(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

 spectralCentroid

2-201

Calculate Spectral Centroid of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral centroid calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.

2 Functions in Audio Toolbox

2-202

2 Calculate the spectral centroid for the frame of audio.
3 Log the spectral centroid for later plotting.

To calculate the spectral centroid for only a given input frame, specify a window with the
same number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 centroid = spectralCentroid(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(centroid)
end

plot(logger.Buffer)
ylabel('Centroid (Hz)')

 spectralCentroid

2-203

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent
samples-per-frame with the analysis window size of spectralCentroid, or if you want
to calculate the spectral centroid for overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral centroid is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

2 Functions in Audio Toolbox

2-204

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 centroid = spectralCentroid(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(centroid)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Centroid (Hz)')

 spectralCentroid

2-205

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x
depends on the shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

2 Functions in Audio Toolbox

2-206

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How
the function interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the
sample rate. In this case, x must be a real vector or matrix. If x is specified as a
matrix, the columns are interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as
the frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-
by-M-by-N array, where L is the number of spectral values at given frequencies of f, M
is the number of individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a
frequency-domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of
'Window' and a real vector. The number of elements in the vector must be in the range
[1, size(x,1)]. The number of elements in the vector must also be greater than
OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

 spectralCentroid

2-207

Number of samples overlapped between adjacent windows, specified as the comma-
separated pair consisting of 'OverlapLength' and an integer in the range [0,
size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the
comma-separated pair consisting of 'FFTLength' and a positive scalar integer. If
unspecified, FFTLength defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and
a two-element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType'
and 'power' or 'magnitude':

• 'power' –– The spectral centroid is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral centroid is calculated for the one-sided magnitude

spectrum.

Data Types: char | string

Output Arguments
centroid — Spectral centroid (Hz)
scalar | vector | matrix

2 Functions in Audio Toolbox

2-208

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid
corresponds to the spectral centroid of a window of x. Each column of centroid
corresponds to an independent channel.

Algorithms
The spectral centroid is calculated as described in [1]:

centroid =
∑

k = b1

b2
fksk

∑
k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and

Classification) in the CUIDADO Project." Technical Report; IRCAM: Paris, France,
2004.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

 spectralCentroid

2-209

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions in Audio Toolbox

2-210

hz2mel
Convert from hertz to mel scale

Syntax
mel = hz2erb(hz)

Description
mel = hz2erb(hz) converts values in hertz to values on the mel frequency scale.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase
exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

 hz2mel

2-211

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

2 Functions in Audio Toolbox

2-212

Output Arguments
mel — Output frequency on mel scale
scalar | vector | matrix | multidimensional array

Output frequency on the mel scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the mel scale uses the following formula:

mel = 2595log10 1 + hz
700

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA:

Addison-Wesley Publishing Company, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | mel2hz

Introduced in R2019a

 hz2mel

2-213

hz2bark
Convert from hertz to Bark scale

Syntax
bark = hz2erb(hz)

Description
bark = hz2erb(hz) converts values in hertz to values on the Bark frequency scale.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

2 Functions in Audio Toolbox

2-214

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

 hz2bark

2-215

Output Arguments
bark — Output frequency on Bark scale
scalar | vector | matrix | multidimensional array

Output frequency on the Bark scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the Bark scale uses the following formula:

bark = 26.81 hz
1960 + hz − 0.53

if :bark < 2 bark = bark + 0.15 (2 − bark)
if :bark > 20.1 bark = bark + 0.22 (bark− 20.1)

The Bark value correction occurs after the conversion from Hz to the Bark scale.

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale."

Journal for the Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2erb | hz2mel | mel2hz

2 Functions in Audio Toolbox

2-216

Introduced in R2019a

 hz2bark

2-217

hz2erb
Convert from hertz to equivalent rectangular bandwidth (ERB) scale

Syntax
erb = hz2erb(hz)

Description
erb = hz2erb(hz) converts values in hertz to values on the ERB frequency scale.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

2 Functions in Audio Toolbox

2-218

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

 hz2erb

2-219

Output Arguments
erb — Output frequency on ERB scale
scalar | vector | matrix | multidimensional array

Output frequency on the ERB scale, returned as a scalar, vector, matrix, or
multidimensional array the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the ERB scale uses the following formula:

erb = Alog10 1 + hz 0.00437
where

A =
1000loge(10)

24.7 4.37

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from

Notched-Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2mel | mel2hz

2 Functions in Audio Toolbox

2-220

Introduced in R2019a

 hz2erb

2-221

mel2hz
Convert from mel scale to hertz

Syntax
hz = mel2hz(mel)

Description
hz = mel2hz(mel) converts values on the mel frequency scale to values in hertz.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase
exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

2 Functions in Audio Toolbox

2-222

Input Arguments
mel — Input frequency on mel scale
scalar | vector | matrix | multidimensional array

Input frequency on the mel scale, specified as a scalar, vector, matrix, or multidimensional
array.
Data Types: single | double

 mel2hz

2-223

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as mel.
Data Types: single | double

Algorithms
The frequency conversion from the mel scale to Hz uses the following formula:

hz = 700 10
mel

2595 − 1

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA:

Addison-Wesley Publishing Company, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | hz2mel

Introduced in R2019a

2 Functions in Audio Toolbox

2-224

bark2hz
Convert from Bark scale to hertz

Syntax
hz = bark2hz(bark)

Description
hz = bark2hz(bark) converts values on the Bark frequency scale to values in hertz.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

 bark2hz

2-225

Input Arguments
bark — Input frequency on Bark scale
scalar | vector | matrix | multidimensional array

Input frequency on the Bark scale, specified as a scalar, vector, matrix, or
multidimensional array.
Data Types: single | double

2 Functions in Audio Toolbox

2-226

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as bark.
Data Types: single | double

Algorithms
The frequency conversion from the Bark scale to Hz uses the following formula:

if :bark < 2 bark = bark− 0.3
0.85

if :bark > 20.1 bark = bark + 4.422
1.22

hz = 1960 bark + 0.53
26.28 − bark

The Bark value correction occurs before the conversion from the Bark scale to Hz.

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale."

Journal for the Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 bark2hz

2-227

See Also
erb2hz | hz2bark | hz2erb | hz2mel | mel2hz

Introduced in R2019a

2 Functions in Audio Toolbox

2-228

erb2hz
Convert from equivalent rectangular bandwidth (ERB) scale to hertz

Syntax
hz = erb2hz(erb)

Description
hz = erb2hz(erb) converts values on the ERB frequency scale to values in hertz.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

 erb2hz

2-229

Input Arguments
erb — Input frequency on ERB scale
scalar | vector | matrix | multidimensional array

Input frequency on the equivalent rectangular band (ERB) scale, specified as a scalar,
vector, matrix, or multidimensional array.
Data Types: single | double

2 Functions in Audio Toolbox

2-230

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array
the same size as erb.
Data Types: single | double

Algorithms
The frequency conversion from the ERB scale to Hz uses the following formula:

hz = 10
erb
A − 1

0.00437
where

A =
1000loge(10)

24.7 4.37

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from

Notched-Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | hz2bark | hz2erb | hz2mel | mel2hz

 erb2hz

2-231

Introduced in R2019a

2 Functions in Audio Toolbox

2-232

mls
Maximum length sequence

Syntax
excitation = mls
excitation = mls(L)
excitation = mls(L,Name,Value)

Description
excitation = mls returns an excitation signal generated using the maximum length
sequence (MLS) technique. This type of sequence is a pseudo-random binary sequence.

excitation = mls(L) specifies the output length L of the excitation signal.

excitation = mls(L,Name,Value) specifies options using one or more Name,Value
pair arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using
the known impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal
must be longer than the impulse response. Note that the length of the MLS excitation is
extended to the next power of two minus one.

 mls

2-233

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

Replicate the excitation signal four times to measure the average of three measurements.
The recording of the first MLS sequence does include all the impulse response
information, so impzest discards it as a warmup run. Pad the excitation signal with zeros
to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

2 Functions in Audio Toolbox

2-234

Pass the excitation signal through the known filter and then add noise to model a real-
word recording (system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

In a real-world scenario, the MLS sequence is played back in the system under test while
recording. The recording would be cut so that it begins at the moment the MLS sequence
is picked-up and truncated to last the duration of the repeated sequence.

 mls

2-235

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Plot the known impulse response and the simulation of the
estimated impulse response for comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

2 Functions in Audio Toolbox

2-236

Generate MLS Signal

Generate an MLS signal that is 2^14-1 samples long and has a level of -5 dB.

L = 2^14-1;
level = -5;
excitation = mls(L,'ExcitationLevel',level);

Visualize the excitation in time and time-frequency. For the time-domain plot, plot only the
first 200 samples for visibility. The pattern is constant.

plot(excitation(1:200))

spectrogram(excitation,512,0,1024,'yaxis')

 mls

2-237

Input Arguments
L — Length of excitation signal
32767 (default) | scalar in the range [3,229)

Length of excitation signal to generate, specified as a scalar in the range [3,229).

The requested output length L must be a power of two minus one. Otherwise, the output
length increases to the next valid length.

2 Functions in Audio Toolbox

2-238

Note If you use the excitation signal generated by the mls function to record and
estimate the impulse response of a system, then the length of the excitation signal must
be at least as long as the impulse response that you want to estimate.

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ExcitationLevel',-5

ExcitationLevel — Level of the excitation signal to generate (dB)
scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range
[-42,0].
Data Types: single | double

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the maximum length sequence (MLS) technique,
returned as a column vector.
Data Types: single | double

References
[1] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of

Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246–262.

 mls

2-239

See Also
Impulse Response Measurer | impzest | sweeptone

Introduced in R2018b

2 Functions in Audio Toolbox

2-240

sweeptone
Exponential swept sine

Syntax
excitation = sweeptone()
excitation = sweeptone(swDur)
excitation = sweeptone(swDur,silDur)
excitation = sweeptone(swDur,silDur,fs)
excitation = sweeptone(___ ,Name,Value)

Description
excitation = sweeptone() returns an excitation signal generated using the
exponential swept sine (ESS) technique. By default, the signal has a 6-second duration,
followed by 4 seconds of silence, for a sample rate of 44100 Hz.

excitation = sweeptone(swDur) specifies the duration of the exponential swept sine
signal.

excitation = sweeptone(swDur,silDur) specifies the duration of the silence
following the exponential swept sine signal.

excitation = sweeptone(swDur,silDur,fs) specifies the sample rate of the sweep
tone as fs Hz.

excitation = sweeptone(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

 sweeptone

2-241

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to
model a real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2 Functions in Audio Toolbox

2-242

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Truncate the estimate to 100 points. Use impz to determine the
true impulse response of the system. Plot the true impulse response and the estimated
impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

 sweeptone

2-243

Generate ESS Signal

Generate an exponential swept sine (ESS) signal with a 3-second sweep that goes from 20
Hz to 20 kHz, and ends with a 2-second silence. Specify the sample rate as 48 kHz.

fs = 48e3;
excitation = sweeptone(3,2,fs,'SweepFrequencyRange',[20 20e3]);

Visualize the excitation in time and time-frequency.

t = (0:numel(excitation)-1)/fs;
plot(t,excitation)
xlabel('Time (s)')

2 Functions in Audio Toolbox

2-244

spectrogram(excitation,512,0,1024,fs,'yaxis')

 sweeptone

2-245

Input Arguments
swDur — Duration of exponential swept sine signal (s)
6 (default) | scalar in the range [0.5,15]

Duration of exponential swept sine signal in seconds, specified as a scalar in the range
[0.5,15].

The total duration of the excitation signal must be less than or equal to 15 seconds:
swDur + silDur ≤ 15.

2 Functions in Audio Toolbox

2-246

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

silDur — Duration of silence after exponential swept sine signal (s)
4 (default) | scalar in the range (0,14.5]

Duration of silence after exponential swept sine, specified as a scalar in the range
(0,14.5].

The total duration of the excitation signal must be less than or equal to 15 seconds:
swDur + silDur ≤ 15.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ExcitationLevel',-5

ExcitationLevel — Level of excitation signal to generate (dB)
-6 (default) | scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range
[-42,0].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SweepFrequencyRange — Range of sweep frequency (Hz)
[10 22000] | two-element positive row vector

 sweeptone

2-247

Range of sweep frequency in Hz, specified as a two-element row vector. The sweep
frequency range can be specified low to high or high to low. That is, [10 22000] and
[22000 10] are both valid inputs. The largest value of the sweep frequency range must
be less than or equal to fs/2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the ESS technique, returned as a column vector. The
length of the column vector is approximately (swDur+silDur)*fs samples.
Data Types: double

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."

Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

See Also
Impulse Response Measurer | impzest | mls

Introduced in R2018b

2 Functions in Audio Toolbox

2-248

interpolateHRTF
3-D head-related transfer function (HRTF) interpolation

Syntax
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions)
interpolatedHRTF = interpolateHRTF(___ ,Name,Value)

Description
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions) returns the interpolated head-related transfer function
(HRTF) at the desired position.

interpolatedHRTF = interpolateHRTF(___ ,Name,Value) specifies options using
one or more Name,Value pair arguments.

Examples

Render 3-D Audio on Headphones

Modify the 3-D audio image of a sound file by filtering it through a head-related transfer
function (HRTF). Set the location of the sound source by specifying the desired azimuth
and elevation.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

 interpolateHRTF

2-249

Calculate the head-related impulse response (HRIR) using the VBAP algorithm at a
desired source position. Separate the output, interpolatedIR, into the impulse
responses for the left and right ears.

desiredAz = 110;
desiredEl = -45;
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition, ...
 "Algorithm","VBAP");

leftIR = squeeze(interpolatedIR(:,1,:))';
rightIR = squeeze(interpolatedIR(:,2,:))';

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects and specify the filter coefficients using the head-related transfer
function interpolated impulse responses.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

leftFilter = dsp.FIRFilter('Numerator',leftIR);
rightFilter = dsp.FIRFilter('Numerator',rightIR);

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the stereo audio data through the left and right HRIR filters, respectively.
3 Concatenate the left and right channels and write the audio to your output device.

while ~isDone(fileReader)
 audioIn = fileReader();

 leftChannel = leftFilter(audioIn(:,1));
 rightChannel = rightFilter(audioIn(:,2));

 deviceWriter([leftChannel,rightChannel]);
end

As a best practice, release your System objects when complete.

2 Functions in Audio Toolbox

2-250

release(deviceWriter)
release(fileReader)

Model Moving Source Using HRIR Filtering

Create arrays of head-related impulse responses corresponding to desired source
positions. Filter mono input to model a moving source.

Load the ARI HRTF dataset. Cast the hrtfData to type double, and reshape it to the
required dimensions: (number of source positions)-by-2-by-(number of HRTF samples).
Use the first two columns of the sourcePosition matrix only, which correspond to the
azimuth and elevation of the source in degrees.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Specify the desired source positions and then calculate the HRTF at these locations using
the interpolateHRTF function. Separate the output, interpolatedIR, into the
impulse responses for the left and right ears.

desiredAz = [-120;-60;0;60;120;0;-120;120];
desiredEl = [-90;90;45;0;-45;0;45;45];
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition);

leftIR = squeeze(interpolatedIR(:,1,:));
rightIR = squeeze(interpolatedIR(:,2,:));

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects with NumeratorSource set to Input port. Setting
NumeratorSource to Input port enables you to modify the filter coefficients while
streaming.

leftFilter = dsp.FIRFilter('NumeratorSource','Input port');
rightFilter = dsp.FIRFilter('NumeratorSource','Input port');

 interpolateHRTF

2-251

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the audio data through the left and right HRIR filters.
3 Concatenate the left and right channels and write the audio to your output device. If

you have a stereo output hardware, such as headphones, you can hear the source
shifting position over time.

4 Modify the desired source position in 2-second intervals by updating the filter
coefficients.

durationPerPosition = 2;
samplesPerPosition = durationPerPosition*fileReader.SampleRate;
samplesPerPosition = samplesPerPosition - rem(samplesPerPosition,fileReader.SamplesPerFrame);

sourcePositionIndex = 1;
samplesRead = 0;
while ~isDone(fileReader)
 audioIn = fileReader();
 samplesRead = samplesRead + fileReader.SamplesPerFrame;

 leftChannel = leftFilter(audioIn,leftIR(sourcePositionIndex,:));
 rightChannel = rightFilter(audioIn,rightIR(sourcePositionIndex,:));

 deviceWriter([leftChannel,rightChannel]);

 if mod(samplesRead,samplesPerPosition) == 0
 sourcePositionIndex = sourcePositionIndex + 1;
 end
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Input Arguments
HRTF — HRTF values measured at source positions
N-by-2-by-M array

2 Functions in Audio Toolbox

2-252

HRTF values measured at the source positions, specified as a N-by-2-by-M array.

• N –– Number of known HRTF pairs
• M –– Number of samples in each known HRTF

If you specify HRTF with real numbers, the function assumes that the input represents an
impulse response, and M corresponds to the length of the impulse response. If you specify
HRTF with complex numbers, the function assumes that the input represents a transfer
function, and M corresponds to the number of bins in the frequency response. The output
of the interpolateHRTF function has the same complexity and interpretation as the
input.
Data Types: single | double
Complex Number Support: Yes

sourcePositions — Source positions corresponding to measured HRTF values
N-by-2 matrix

 interpolateHRTF

2-253

Source positions corresponding to measured HRTF values, specified as a N-by-2 matrix. N
is the number of known HRTF pairs. The two columns correspond to the azimuth and
elevation of the source in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the
0 to 360 convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0
to 180 convention.
Data Types: single | double

desiredSourcePositions — Desired source positions for HRTF interpolation
P-by-2 matrix

Desired source position for HRTF interpolation, specified as a P-by-2 matrix. P is the
number of desired source positions. The columns correspond to the desired azimuth and
elevation of the source in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the
0 to 360 convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0
to 180 convention.

2 Functions in Audio Toolbox

2-254

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Algorithm','VBAP'

Algorithm — Interpolation algorithm
'Bilinear' (default) | 'VBAP'

Interpolation algorithm, specified as "Bilinear" or "VBAP".

• Bilinear –– 3-D bilinear interpolation, as specified by [1].

 interpolateHRTF

2-255

• VBAP –– Vector base amplitude panning interpolation, as specified by [2].

Data Types: char | string

Output Arguments
interpolatedHRTF — Interpolated HRTF
P-by-2-by-M

Interpolated HRTF, returned as a P-by-2-by-M array.

• P –– Number of desired source positions, specified by the number of rows in the
desiredSourcePositions input argument.

• M –– Number of samples in each known HRTF, specified by the number of pages in the
HRTF input argument.

2 Functions in Audio Toolbox

2-256

interpolatedHRTF has the same complexity and interpretation as the input. If you
specify the input, HRTF, with real numbers, the function assumes that the input
represents an impulse response. If you specify the input with complex numbers, the
function assumes that the input represents a transfer function.
Data Types: single | double
Complex Number Support: Yes

References
[1] F.P. Freeland, L.W.P. Biscainho and P.S.R. Diniz, "Interpolation of Head-Related

Transfer Functions (HRTFS): A multi-source approach." 2004 12th European
Signal Processing Conference. Vienna, 2004, pp. 1761–1764.

[2] Pulkki, Ville. "Virtual Sound Source Positing Using Vector Base Amplitude Panning."
Journal of Audio Engineering Society. Vol. 45. Issue 6, pp. 456–466.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.FIRFilter | dsp.FrequencyDomainFIRFilter

External Websites
Acoustics Research Institute HRTF Database

Introduced in R2018b

 interpolateHRTF

2-257

https://www.kfs.oeaw.ac.at/index.php?view=article&id=608&lang=en

impzest
Estimate impulse response of audio system

Syntax
ir = impzest(excitation,response)
ir = impzest(excitation,response,Name,Value)

Description
ir = impzest(excitation,response) returns an estimate of the impulse response
(IR) based on the excitation and response.

ir = impzest(excitation,response,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

2 Functions in Audio Toolbox

2-258

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to
model a real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

 impzest

2-259

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Truncate the estimate to 100 points. Use impz to determine the
true impulse response of the system. Plot the true impulse response and the estimated
impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

2 Functions in Audio Toolbox

2-260

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using
the known impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal
must be longer than the impulse response. Note that the length of the MLS excitation is
extended to the next power of two minus one.

 impzest

2-261

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

Replicate the excitation signal four times to measure the average of three measurements.
The recording of the first MLS sequence does include all the impulse response
information, so impzest discards it as a warmup run. Pad the excitation signal with zeros
to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

2 Functions in Audio Toolbox

2-262

Pass the excitation signal through the known filter and then add noise to model a real-
word recording (system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

In a real-world scenario, the MLS sequence is played back in the system under test while
recording. The recording would be cut so that it begins at the moment the MLS sequence
is picked-up and truncated to last the duration of the repeated sequence.

 impzest

2-263

Pass the excitation signal and the system response to the impzest function to estimate
the impulse response. Plot the known impulse response and the simulation of the
estimated impulse response for comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

2 Functions in Audio Toolbox

2-264

Input Arguments
excitation — Single period of excitation signal input to audio system
column vector

Single period of excitation signal input to audio system, specified as a column vector.

You can generate excitation signals by using mls (maximum length sequence) or
sweeptone (exponential sine sweep).
Data Types: single | double

 impzest

2-265

response — Recorded signal output from audio system
column vector | matrix

Recorded signal output from audio system, specified as a column vector or matrix. If
specified as a matrix, each column of the matrix is treated as an independent channel.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'WarmupRuns',2

WarmupRuns — Number of warmup runs in response
nonnegative integer

Number of warmup runs in the response, specified as a nonnegative integer. The
impzest function estimates the impulse response after discarding the specified number
of warmup runs from the response.

The default number of warmup runs depends on whether the excitation signal was
generated using the mls or sweeptone function:

• mls –– 1
• sweeptone –– 0

Data Types: single | double

Output Arguments
ir — Estimate of the impulse response of an audio system
column vector | matrix

Estimate of the impulse response of an audio system, returned as a column vector or
matrix. The size of ir is L-by-C, where:

2 Functions in Audio Toolbox

2-266

• L –– MLS length or duration of sweep tone silence
• C –– Number of columns (channels) in the response signal

Data Types: single | double

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps."

Presented at the Audio Engineering Society 122nd Convention, Vienna, Austria,
2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of
Different Impulse Response Measurement Techniques." Journal of Audio
Engineering Society. Vol. 50, Issue 4, 2002, pp. 246–262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time
Partitioned Convolution on a DSP Board." Application of Signal Processing to
Audio and Acoustics, 2003 IEEE Workshop, pp. 71–74. IEEE, 2003.

See Also
Impulse Response Measurer | mls | sweeptone

Introduced in R2018b

 impzest

2-267

mididevinfo
MIDI device information

Syntax
mididevinfo
deviceInformation = mididevinfo

Description
mididevinfo displays a table containing information about the MIDI devices attached to
the system.

deviceInformation = mididevinfo returns a structure, deviceInformation,
containing information about the MIDI devices attached to the system.

Note Before starting MATLAB, connect your MIDI device to your computer and turn on
the device. For connection instructions, see the instructions for your MIDI device. If you
start MATLAB before connecting your device, MATLAB might not recognize your device
when you connect it. To correct the problem, restart MATLAB with the device already
connected.

Examples

Display MIDI Device Connections

Call mididevinfo to display a table containing information about the MIDI devices
attached to your system.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name

2 Functions in Audio Toolbox

2-268

 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'BCF2000'
 2 input MMSystem 'MIDIIN2 (BCF2000)'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'BCF2000'
 5 output MMSystem 'MIDIOUT2 (BCF2000)'
 6 output MMSystem 'MIDIOUT3 (BCF2000)'

Return Structure of MIDI Device Connections

Call mididevinfo with an output argument to return a structure containing MIDI device
information.

deviceInformation = mididevinfo

deviceInformation = struct with fields:
 input: [0×0 struct]
 output: [1×2 struct]

The deviceInformation structure has two fields: input and output. Both input and
output contain arrays of structures. Each member has three fields: Name, Interface,
and ID. Get the device information for the output Microsoft GS Wavetable Synth device.

deviceInformation.output(2)

ans = struct with fields:
 Name: 'Microsoft GS Wavetable Synth'
 Interface: 'MMSystem'
 ID: 1

Output Arguments
deviceInformation — Description of available devices
struct

Description of available devices, returned as nested structures. The outer structure has
two fields: input and output. The input and output values are arrays of structures, and
each member has three fields: Name, Interface, and ID.

 mididevinfo

2-269

Data Types: struct

See Also
mididevice | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

2 Functions in Audio Toolbox

2-270

https://www.midi.org/

pitch
Estimate fundamental frequency of audio signal

Syntax
f0 = pitch(audioIn,fs)
f0 = pitch(audioIn,fs,Name,Value)
[f0,loc] = pitch(___)

Description
f0 = pitch(audioIn,fs) returns estimates of the fundamental frequency over time
for the audio input, audioIn, with sample rate fs. Columns of the input are treated as
individual channels.

f0 = pitch(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.

[f0,loc] = pitch(___) returns the locations, loc, associated with fundamental
frequency estimates.

Examples

Estimate Pitch of Speech Signal Using Default Parameters

Read in an audio file and then call the pitch function with default parameters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[f0,idx] = pitch(audioIn,fs);

Plot the audio signal and pitch contour.

subplot(2,1,1)
plot(audioIn)

 pitch

2-271

ylabel('Amplitude')

subplot(2,1,2)
plot(idx,f0)
ylabel('Pitch (Hz)')
xlabel('Sample Number')

The pitch function estimates the fundamental frequency of the input signal at locations
determined by the WindowLength and OverlapLength name-value pairs.

2 Functions in Audio Toolbox

2-272

Estimate Pitch of Musical Signal Using Nondefault Parameters

Load an audio file of the introduction to Für Elise and the sample rate of the audio. Call
the pitch function using the pitch estimate filter (PEF), a search range from 50 Hz to
800 Hz, a window length of 80 ms, and an overlap of 50 ms. Plot the results and listen to
the song to verify the fundamental frequency estimates returned by the pitch function.

load FurElise.mat song fs

[f0,loc] = pitch(song,fs, ...
 'Method','PEF', ...
 'Range',[50 800], ...
 'WindowLength',round(fs*0.08), ...
 'OverlapLength',round(fs*0.05));

t = loc/fs;
plot(t,f0)
ylabel('Pitch (Hz)')
xlabel('Time (s)')

 pitch

2-273

sound(song,fs)

Compare Pitch Detection Algorithms

The different methods of estimating pitch provide trade-offs in terms of noise robustness,
accuracy, optimal lag, and computation expense. In this example, you compare the
performance of different pitch detection algorithms in terms of gross pitch error (GPE)
and computation time under different noise conditions.

2 Functions in Audio Toolbox

2-274

Prepare Test Signals

Load an audio file and determine the number of samples it has. Also load the true pitch
corresponding to the audio file. The true pitch was determined as an average of several
third-party algorithms on the clean speech file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
numSamples = size(audioIn,1);
load TruePitch.mat truePitch

Create test signals by adding noise to the audio signal at given SNRs. The mixSNR
function is a convenience function local to this example, which takes a signal, noise, and
requested SNR and returns a noisy signal at the request SNR.

testSignals = zeros(numSamples,4);

turbine = audioread('Turbine-16-44p1-mono-22secs.wav');
testSignals(:,1) = mixSNR(audioIn,turbine,20);
testSignals(:,2) = mixSNR(audioIn,turbine,0);

whiteNoiseMaker = dsp.ColoredNoise('Color','white','SamplesPerFrame',size(audioIn,1));
testSignals(:,3) = mixSNR(audioIn,whiteNoiseMaker(),20);
testSignals(:,4) = mixSNR(audioIn,whiteNoiseMaker(),0);

Save the noise conditions and algorithm names as cell arrays for labeling and indexing.

noiseConditions = {'Turbine (20 dB)','Turbine (0 dB)','WhiteNoise (20 dB)','WhiteNoise (0 dB)'};
algorithms = {'NCF','PEF','CEP','LHS','SRH'};

Run Pitch Detection Algorithms

Preallocate arrays to hold pitch decisions for each algorithm and noise condition pair, and
the timing information. In a loop, call the pitch function on each combination of
algorithm and noise condition. Each algorithm has an optimal window length associated
with it. In this example, for simplicity, you use the default window length for all
algorithms. Use a 3-element median filter to smooth the pitch decisions.

f0 = zeros(numel(truePitch),numel(algorithms),numel(noiseConditions));
algorithmTimer = zeros(numel(noiseConditions),numel(algorithms));

for k = 1:numel(noiseConditions)
 x = testSignals(:,k);
 for i = 1:numel(algorithms)
 tic

 pitch

2-275

 f0temp = pitch(x,fs, ...
 'Range',[50 300], ...
 'Method',algorithms{i}, ...
 'MedianFilterLength',3);
 algorithmTimer(k,i) = toc;
 f0(1:max(numel(f0temp),numel(truePitch)),i,k) = f0temp;
 end
end

Compare Gross Pitch Error

Gross pitch error (GPE) is a popular metric when comparing pitch detection algorithms.
GPE is defined as the proportion of pitch decisions for which the relative error is higher
than a given threshold, traditionally 20% in speech studies. Calculate the GPE and print it
to the Command Window.

idxToCompare = ~isnan(truePitch);
truePitch = truePitch(idxToCompare);
f0 = f0(idxToCompare,:,:);

p = 0.20;
GPE = mean(abs(f0(1:numel(truePitch),:,:) - truePitch) > truePitch.*p).*100;

for ik = 1:numel(noiseConditions)
 fprintf('\nGPE (p = %0.2f), Noise = %s.\n',p,noiseConditions{ik});
 for i = 1:size(GPE,2)
 fprintf('- %s : %0.1f %%\n',algorithms{i},GPE(1,i,ik))
 end
end

GPE (p = 0.20), Noise = Turbine (20 dB).
- NCF : 0.9 %
- PEF : 0.4 %
- CEP : 8.2 %
- LHS : 8.2 %
- SRH : 6.0 %

GPE (p = 0.20), Noise = Turbine (0 dB).
- NCF : 5.6 %
- PEF : 24.5 %
- CEP : 11.6 %
- LHS : 9.4 %
- SRH : 46.8 %

GPE (p = 0.20), Noise = WhiteNoise (20 dB).

2 Functions in Audio Toolbox

2-276

- NCF : 0.9 %
- PEF : 0.0 %
- CEP : 12.9 %
- LHS : 6.9 %
- SRH : 2.6 %

GPE (p = 0.20), Noise = WhiteNoise (0 dB).
- NCF : 0.4 %
- PEF : 0.0 %
- CEP : 23.6 %
- LHS : 7.3 %
- SRH : 1.7 %

Calculate the average time it takes to process one second of data for each of the
algorithms and print the results.

aT = sum(algorithmTimer)./((numSamples/fs)*numel(noiseConditions));
for ik = 1:numel(algorithms)
 fprintf('- %s : %0.3f (s)\n',algorithms{ik},aT(ik))
end

- NCF : 0.054 (s)
- PEF : 0.284 (s)
- CEP : 0.065 (s)
- LHS : 0.179 (s)
- SRH : 0.205 (s)

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using
the pitch function. Then use the voiceActivityDetector to remove irrelevant pitch
information that does not correspond to the speaker.

Read in the audio file and associated sample rate.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop).
Specify that the pitch function searches for the fundamental frequency over the range
50-150 Hz and postprocesses the results with a median filter. Plot the results.

windowLength = round(0.05*fs);
overlapLength = round(0.04*fs);

 pitch

2-277

hopLength = windowLength - overlapLength;

[f0,loc] = pitch(audio,fs, ...
 'WindowLength',windowLength, ...
 'OverlapLength',overlapLength, ...
 'Range',[50 150], ...
 'MedianFilterLength',3);

plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

2 Functions in Audio Toolbox

2-278

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped
frames. Also create a voiceActivityDetector System object™ to determine if the
frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the
probability that the frame contains speech. To mimic the decision spacing in time of the
pitch function, the first frame read from the buffer has no overlap.

n = 1;
probabilityVector = zeros(numel(loc),1);
while buffer.NumUnreadSamples >= hopLength
 if n==1
 x = read(buffer,windowLength);
 else
 x = read(buffer,windowLength,overlapLength);
 end
 probabilityVector(n) = VAD(x);
 n = n+1;
end

Use the probability vector determined by the voiceActivityDetector to plot a pitch
contour for the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;
f0(~validIdx) = nan;
plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

 pitch

2-279

Input Arguments
audioIn — Audio input signal
vector | matrix

Audio input signal, specified as a vector or matrix. The columns of the matrix are treated
as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

2 Functions in Audio Toolbox

2-280

Sample rate of the input signal in Hz, specified as a positive scalar.

The sample rate must be greater than or equal to twice the upper bound of the search
range. Specify the search range using the Range name-value pair.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: pitch(audioIn,fs,'Range',[50,150],'Method','PEF')

Range — Search range for pitch estimates
[50,400] (default) | two-element row vector with increasing positive integer values

Search range for pitch estimates, specified as the comma-separated pair consisting of
'Range' and a two-element row vector with increasing positive integer values. The
function searches for a best estimate of the fundamental frequency within the upper and
lower band edges specified by the vector, according to the algorithm specified by Method.
The range is inclusive and units are in Hz.

Valid values for the search range depend on the sample rate, fs, and on the values of
WindowLength and Method:

Method Minimum Range Maximum Range
'NCF' fs/WindowLength <

Range(1)
Range(2) < fs/2

'PEF' 10 < Range(1) Range(2) <
min(4000,fs/2)

'CEP' fs/
(2^nextpow2(2*WindowLe
ngth-1)) < Range(1)

Range(2) < fs/2

'LHS' 1 < Range(1) Range(2) < fs/5 - 1
'SRH' 1 < Range(1) Range(2) < fs/5 - 1

Data Types: single | double

 pitch

2-281

WindowLength — Number of samples in analysis window
round(fs*0.052) (default) | integer

Number of samples in the analysis window, specified as the comma-separated pair
consisting of 'WindowLength' and an integer in the range [1, min(size(audioIn,1),
192000)]. Typical analysis windows are in the range 20–100 ms. The default window
length is 52 ms.
Data Types: single | double

OverlapLength — Number of samples of overlap between adjacent analysis
windows
round(fs*0.042) (default) | integer

Number of samples of overlap between adjacent analysis windows, specified as the
comma-separated pair consisting of 'OverlapLength' and an integer in the range (-
inf,WindowLength). A negative overlap length indicates non-overlapping analysis
windows.
Data Types: single | double

Method — Method used to estimate pitch
'NCF' (default) | 'PEF' | 'CEP' | 'LHS' | 'SRH'

Method used to estimate pitch, specified as the comma-separated pair consisting of
'Method' and 'NCF', 'PEF','CEP', 'LHS', or 'SRH'. The different methods of
calculating pitch provide trade-offs in terms of noise robustness, accuracy, and
computation expense. The algorithms used to calculate pitch are based on the following
papers:

• 'NCF' –– Normalized Correlation Function [1]
• 'PEF' –– Pitch Estimation Filter [2]. The function does not use the amplitude

compression described by the paper.
• 'CEP' –– Cepstrum Pitch Determination [3]
• 'LHS' –– Log-Harmonic Summation [4]
• 'SRH' –– Summation of Residual Harmonics [5]

Data Types: char | string

MedianFilterLength — Median filter length used to smooth pitch estimates over
time
1 (default) | positive integer

2 Functions in Audio Toolbox

2-282

Median filter length used to smooth pitch estimates over time, specified as the comma-
separated pair consisting of 'MedianFilterLength' and a positive integer. The default,
1, corresponds to no median filtering. Median filtering is a postprocessing technique used
to remove outliers while estimating pitch. The function uses movmedian after estimating
the pitch using the specified Method.
Data Types: single | double

Output Arguments
f0 — Estimated fundamental frequency (Hz)
scalar | vector | matrix

Estimated fundamental frequency, in Hz, returned as a scalar, vector, or matrix. The
number of rows returned depends on the values of the WindowLength and
OverlapLength name-value pairs, and on the input signal size. The number of columns
(channels) returned depends on the number of columns of the input signal size.
Data Types: single | double

loc — Locations associated with fundamental frequency estimations
scalar | vector | matrix

Locations associated with fundamental frequency estimations, returned as a scalar,
vector, or matrix the same size as f0.

Fundamental frequency is estimated locally over a region of WindowLength samples. The
values of loc correspond to the most recent sample (largest sample number) used to
estimate fundamental frequency.
Data Types: single | double

Algorithms
The pitch function segments the audio input according to the WindowLength and
OverlapLength arguments. The fundamental frequency is estimated for each frame. The
locations output, loc contains the most recent samples (largest sample numbers) of the
corresponding frame.

 pitch

2-283

For a description of the algorithms used to estimate the fundamental frequency, consult
the corresponding references:

• 'NCF' –– Normalized Correlation Function [1]
• 'PEF' –– Pitch Estimation Filter [2]. The function does not use the amplitude

compression described by the paper.
• 'CEP' –– Cepstrum Pitch Determination [3]
• 'LHS' –– Log-Harmonic Summation [4]
• 'SRH' –– Summation of Residual Harmonics [5]

References
[1] Atal, B.S. "Automatic Speaker Recognition Based on Pitch Contours." The Journal of

the Acoustical Society of America. Vol. 52, No. 6B, 1972, pp. 1687–1697.

[2] Gonzalez, Sira, and Mike Brookes. "A Pitch Estimation Filter robust to high levels of
noise (PEFAC)." 19th European Signal Processing Conference. Barcelona, 2011,
pp. 451–455.

[3] Noll, Michael A. "Cepstrum Pitch Determination." The Journal of the Acoustical
Society of America. Vol. 31, No. 2, 1967, pp. 293–309.

[4] Hermes, Dik J. "Measurement of Pitch by Subharmonic Summation." The Journal of the
Acoustical Society of America. Vol. 83, No. 1, 1988, pp. 257–264.

2 Functions in Audio Toolbox

2-284

[5] Drugman, Thomas, and Abeer Alwan. "Joint Robust Voicing Detection and Pitch
Estimation Based on Residual Harmonics." Proceedings of the Annual Conference
of the International Speech Communication Association, INTERSPEECH. 2011,
pp. 1973–1976.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mfcc

System Objects
cepstralFeatureExtractor | voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

 pitch

2-285

mfcc
Extract mfcc, log energy, delta, and delta-delta of audio signal

Syntax
coeffs = mfcc(audioIn,fs)
coeffs = mfcc(___ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = mfcc(___)

Description
coeffs = mfcc(audioIn,fs) returns the mel frequency cepstral coefficients (MFCCs)
for the audio input, sampled at a frequency of fs Hz.

coeffs = mfcc(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values..
Example: [coeffs] = mfcc(audioIn,fs,'LogEnergy','Replace') returns mel
frequency cepstral coefficients for the audio input signal sampled at fs Hz. The first
coefficient in the coeffs vector is replaced with the log energy value.

[coeffs,delta,deltaDelta,loc] = mfcc(___) returns the delta, delta-delta, and
location of samples corresponding to each window of data.

Examples

Compute Mel Frequency Cepstral Coefficients

Compute the mel frequency cepstral coefficients of a speech signal using the mfcc
function. The function returns delta, the change in coefficients, and deltaDelta, the
change in delta values. The log energy value that the function computes can prepend the
coefficients vector or replace the first element of the coefficients vector. This is done
based on whether you set the 'LogEnergy' argument to 'Append' or 'Replace'.

2 Functions in Audio Toolbox

2-286

Read an audio signal from the 'Counting-16-44p1-mono-15secs.wav' file using the
audioread function. The mfcc function processes the entire speech data in a batch. The
default DeltaWindowLength is 2. Therefore, delta is computed as the difference
between the current coefficients and the previous coefficients. deltaDelta is computed
as the difference between the current and the previous delta values. Based on the number
of input rows, the window length, and the hop length, mfcc partitions the speech into
1551 frames and computes the cepstral features for each frame. Each row in the coeffs
matrix corresponds to the log-energy value followed by the 13 mel-frequency cepstral
coefficients for the corresponding frame of the speech file. The function also computes
loc, the location of the last sample in each input frame.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

Input Arguments
audioIn — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If specified as a matrix, mfcc treats the
columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate in Hz
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [coeffs,delta,deltaDelta,loc] =
mfcc(audioIn,fs,'LogEnergy','Replace','DeltaWindowLength',5) returns

 mfcc

2-287

mel frequency cepstral coefficients for the audio input signal sampled at fs Hz. The first
coefficient in the coeffs vector is replaced with the log energy value. A set of 5 cepstral
coefficients is used to compute the delta and the delta-delta values.

WindowLength — Number of samples in analysis window
round(fs*0.03) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as an
integer greater than or equal to 2. If unspecified, the 'WindowLength' value defaults to
round(fs*0.03). Window length must be in the range [2,size(audioIn,1)].
Data Types: single | double

OverlapLength — Number of overlapping samples between adjacent windows
round(fs*0.02) (default) | integer

Number of samples which overlap or underlap between the adjacent windows. An
'OverlapLength' value that is:

• Positive indicates an overlap between adjacent windows.
• Negative indicates an underlap between adjacent windows.
• Zero indicates no overlap between adjacent windows.

The 'OverlapLength' value must be set to less than the 'WindowLength'.

Here is how the overlapping frames look:

Here is how the underlapping frames look:

2 Functions in Audio Toolbox

2-288

Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as an integer in the
range [2 v], where v is the number of valid passbands.

The number of valid passbands is defined as sum(BandEdges <= floor(fs/2))-2. A
passband is valid if its edges fall below fs/2, where fs is the sample rate of the input
audio signal, specified as the second argument, fs.

The mfcc function uses a filter bank of 40 half-overlapped triangles, with band edges
defined by the table:

Filters Passband Edges (Hz)
Filter 1 [133 267]
Filter 2 [200 333]
Filter 3 [267 400]
Filter 4 [333 467]
Filter 5 [400 533]
Filter 6 [467 600]
Filter 7 [533 667]
Filter 8 [600 733]

 mfcc

2-289

Filters Passband Edges (Hz)
Filter 9 [667 800]
Filter 10 [733 867]
Filter 11 [800 933]
Filter 12 [867 999]
Filter 13 [933 1071]
Filter 14 [999 1147]
Filter 15 [1071 1229]
Filter 16 [1147 1316]
Filter 17 [1229 1410]
Filter 18 [1316 1510]
Filter 19 [1410 1618]
Filter 20 [1510 1733]
Filter 21 [1618 1856]
Filter 22 [1733 1988]
Filter 23 [1856 2130]
Filter 24 [1988 2281]
Filter 25 [2130 2444]
Filter 26 [2281 2618]
Filter 27 [2444 2804]
Filter 28 [2618 3004]
Filter 29 [2804 3217]
Filter 30 [3004 3446]
Filter 31 [3217 3692]
Filter 32 [3446 3954]
Filter 33 [3692 4236]
Filter 34 [3954 4537]
Filter 35 [4236 4860]
Filter 36 [4537 5206]

2 Functions in Audio Toolbox

2-290

Filters Passband Edges (Hz)
Filter 37 [4860 5577
Filter 38 [5206 5973]
Filter 39 [5577 6399]
Filter 40 [5973 6854]

The passband edges in the table are rounded for readability. For exact edges, see the
default settings of the cepstralFeatureExtractor System object.
Data Types: single | double

FFTLength — Number of bins for calculating DFT
WindowLength (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples. The FFT length
value must be greater than or equal to the 'WindowLength' value. The
'WindowLength' argument specifies the number of rows in the windowed input. By
default, the FFT length value is set to the 'WindowLength'.
Data Types: single | double

DeltaWindowLength — Number of coefficients for calculating delta and delta-
delta
2 (default) | odd integer greater than 2

Number of coefficients used to calculate the delta and the delta-delta values, specified as
2 or an odd integer greater than 2.

If 'DeltaWindowLength' is set to 2, the delta is given by the difference between the

current coefficients and the previous coefficients, delta currCoeffs prevCoeffs= -

If 'DeltaWindowLength' is set to an odd integer greater than 2, the delta values are
given by the following equation:

delta

k coeffs k

k

k M

M

k M

M
=

◊
=-

=-

Â

Â

(,:)

2

 mfcc

2-291

The function uses a least-squares approximation of the local slope over a region around
the current time sample. The delta cepstral values are computed by fitting the cepstral
coefficients of neighboring frames (M frames before the current frame and M frames after
the current frame) by a straight line. For details, see [1].
Data Types: single | double

LogEnergy — Specify how the log energy is shown
'Append' (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

• 'Append' –– The function prepends the log energy to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The function replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: char | string

Output Arguments
coeffs — Mel frequency cepstral coefficients (MFCCs)
matrix | array

Mel frequency cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N
array, where,

• L –– Number of frames the audio signal is partitioned into. The 'WindowLength' and
'OverlapLength' properties control this dimension.

2 Functions in Audio Toolbox

2-292

The number of audio frames, L, is computed using the following equation:
L nRows winLen hopLen= -()() +floor 1

• nRows –– Number of input rows.
• winLen –– Number of samples in the analysis window, specified by the

'WindowLength' argument. If not specified, the window length is
round(fs*0.03).

• hopLen –– Number of samples in the current frame before the start of the next

frame. Hop length is given by hopLen WindowLength OverlapLength= - .
• M –– Number of coefficients returned per frame. This value is determined by the

NumCoeffs and LogEnergy properties.

When the LogEnergy property is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector.
The length of the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.
• N –– Number of input channels (columns).

Data Types: single | double

 mfcc

2-293

delta — Change in coefficients
matrix | array

Change in coefficients from one frame of data to another, returned as an L-by-M matrix or
an L-by-M-by-N array. The delta array is the same size and data type as the coeffs
array.

If 'DeltaWindowLength' is set to 2, the delta is given by the difference between the

current coefficients and the previous coefficients, delta currCoeffs prevCoeffs= -

Consider the example below which computes the mel frequency coefficients for the entire
speech file. The 'DeltaWindowLength' value is 2. The mfcc function partitions the
speech into 1551 frames. Each row in the coeffs matrix corresponds to the log energy
value followed by the 13 mel frequency cepstral coefficients for the corresponding
segment of the speech file.
[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

The first row of the delta matrix, delta(1,:) is zeros. The second row, delta(2,:)
equals the difference in coefficients for the current frame, coeffs(2,:) and the
previous frame, coeffs(1,:).

If 'DeltaWindowLength' is set to an odd integer greater than 2, the delta values are
given by the following equation:

delta

k coeffs k

k

k M

M

k M

M
=

◊
=-

=-

Â

Â

(,:)

2

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

2 Functions in Audio Toolbox

2-294

Change in delta values from one frame of data to another, returned as an L-by-M matrix
or an L-by-M-by-N array. The deltaDelta array is the same size and data type as the
coeffs and delta arrays.

If 'DeltaWindowLength' is set to 2, the deltaDelta is given by the difference
between the current delta values and the previous delta values,
deltaDelta currdelta prevdelta= -

Consider the example below which computes the mel frequency coefficients for the entire
speech file. The 'DeltaWindowLength' value is 2.
[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

The first row of the deltaDelta matrix, deltaDelta(1,:) is zeros. The second row,
deltaDelta(2,:) equals the difference in delta values for the current frame,
delta(2,:) and the previous frame, delta(1,:).

If 'DeltaWindowLength' is set to an odd integer greater than 2, the deltaDelta
values are given by the following equation:

deltaDelta

k delta k

k

k M

M

k M

M
=

◊
=-

=-

Â

Â

(,:)

2

The function uses a least-squares approximation of the local slope over a region around
the current time sample. For details, see [1].
Data Types: single | double

loc — Location of the last sample in each input frame
vector

Location of last sample in each input frame, returned as a vector. The loc vector is given
by the [t1, t2, t3,…,tn] elements in the following diagram, where n corresponds to the
number of frames the input is partitioned into, and tn is the last sample of the last frame.

 mfcc

2-295

Data Types: single | double

Algorithms
The mfcc function splits the entire data into overlapping segments. The length of each
rolloff segment is determined by the 'WindowLength' argument. The length of overlap
between segments is determined by the 'OverlapLength' argument.

The function computes the mel frequency cepstral coefficients, log energy values, cepstral
delta, and the cepstral delta-delta values for each segment as per the algorithm described
in cepstralFeatureExtractor System object.

2 Functions in Audio Toolbox

2-296

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital

Speech Processing. Upper Saddle River, NJ: Pearson, 2010.

See Also
Functions
pitch

System Objects
cepstralFeatureExtractor | voiceActivityDetector

Blocks
Cepstral Feature Extractor | Voice Activity Detector

Introduced in R2018a

 mfcc

2-297

asiosettings
Open settings panel for ASIO driver

Syntax
asiosettings
asiosettings(deviceName)

Description
asiosettings opens the settings panel for the ASIO driver associated with the default
audio device.

asiosettings(deviceName) opens the settings panel for the ASIO driver associated
with the audio device, deviceName.

Examples

Open ASIO Settings Panel for Specified Device

Create an audio I/O object, audioPlayerRecorder. Call asiosettings with the device
associated with audioPlayerRecorder as the argument.

playRec = audioPlayerRecorder;
asiosettings(playRec.Device)

Open ASIO Settings Panel for Default Device

Call the asiosettings function with no arguments.

asiosettings()

2 Functions in Audio Toolbox

2-298

Optimize Latency

To optimize latency when using an ASIO driver, set the buffer size of the ASIO driver to
the buffer size of your audio I/O object. In this example, assume the input to your audio
device writer is 64 samples per frame. This example requires a Windows machine and an
ASIO driver.

Create an audioDeviceWriter System object™. Open the ASIO settings panel for an
ASIO-compatible device associated with your device writer.

deviceWriter = audioDeviceWriter('Driver','ASIO');
asiosettings(deviceWriter.Device)

On the machine in this example, the following dialog opens:

 asiosettings

2-299

The dialog that opens is specific to your ASIO driver. Set the ASIO buffer size to the
desired size, 64.

The latency is now minimized for the frame size of 64 samples. If you want to measure the
reduction in latency specific to your system, follow the steps in the Measure Audio
Latency example.

Input Arguments
deviceName — Name of ASIO-compatible device
default ASIO-compatible device (default) | character vector | string

2 Functions in Audio Toolbox

2-300

Name of ASIO-compatible device, specified as a character vector or string. If
deviceName is not specified, the default ASIO-compatible device is used.

To view a list of valid ASIO device names on your machine, use getAudioDevices on an
audioPlayerRecorder, audioDeviceReader('Driver','ASIO'), or
audioDeviceWriter('Driver','ASIO') object.
Data Types: char | string

Tips
• asiosettings is compatible only on Windows machines with ASIO drivers. ASIO

drivers do not come pre-installed with Windows.
• asiosettings returns an error if called with a locked audio device. For example:

aDR = audioDeviceReader('Driver','ASIO');
aDR();
asiosettings(aDR.Device)

Error using audio_asiosettings
PortAudio Error: Device unavailable

Error in asiosettings (line 77)
 audio_asiosettings(ID);

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2017b

 asiosettings

2-301

getAudioDevices
List available audio devices

Syntax
devices = getAudioDevices(obj)

Description
devices = getAudioDevices(obj) returns a list of audio devices that are available
and compatible with your audio I/O object, obj.

Examples

List Audio Devices Available to audioDeviceReader

Create an audioDeviceReader System object™, and then call getAudioDevices on
your object.

deviceReader = audioDeviceReader;
devices = getAudioDevices(deviceReader)

List Audio Devices Available to audioDeviceWriter

Create an audioDeviceWriter System object™, and then call getAudioDevices on
your object.

deviceWriter = audioDeviceWriter;
devices = getAudioDevices(deviceWriter)

2 Functions in Audio Toolbox

2-302

List Audio Devices Available to audioPlayerRecorder

Create an audioPlayerRecorder System object™, and then call getAudioDevices on
your object.

playRec = audioPlayerRecorder;
devices = getAudioDevices(playRec)

Input Arguments
obj — Audio I/O object
object of audioDeviceReader | object of audioDeviceWriter | object of
audioPlayerRecorder

Audio I/O object, specified as an object of audioDeviceReader, audioDeviceWriter,
or audioPlayerRecorder.
Data Types: object

Output Arguments
devices — List of available and compatible devices
array

List of available and compatible devices.

For audioDeviceReader and audioDeviceWriter, the list of audio devices depends
on the specified Driver property of your object.

For audioPlayerRecorder, the audio devices listed support full-duplex mode and have
a platform-appropriate driver:

• Windows® –– ASIO™
• Mac –– CoreAudio
• Linux® –– ALSA

Data Types: cell

 getAudioDevices

2-303

Tips
Devices are persistent within a MATLAB session. To recognize new devices within your
MATLAB session, clear device data within your session using the command line. As an
example, if you have created an audioDeviceReader System object, you can type the
following into your command line:

>> deviceReader = audioDeviceReader;
>> devices = getAudioDevices(deviceReader)

devices =

 1×1 cell array

 {'No audio input device detected'}

This displays a list of the devices connected to your computer. To add more devices,
connect the additional devices to your computer. Then, type the following into your
command line:

>> clear deviceReader dspAudioDeviceInfo
>> deviceReader = audioDeviceReader;
>> devices = getAudioDevices(deviceReader)

devices =

 1×3 cell array

 {'Default'} {'Primary Sound Capture Driver'} {'Headset Microphone (Plantro…'}

This displays an updated list of the devices connected to your computer, including the
devices you added during your current session. This process also works with the
audioDeviceWriter and audioPlayerRecorder System objects.

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

2 Functions in Audio Toolbox

2-304

Introduced in R2016a

 getAudioDevices

2-305

audioPluginInterface
Specify audio plugin interface

Syntax
PluginInterface = audioPluginInterface
PluginInterface = audioPluginInterface(pluginParameters)
PluginInterface = audioPluginInterface(Name,Value)

Description
PluginInterface = audioPluginInterface returns an object, PluginInterface,
that specifies the interface of an audio plugin in a digital audio workstation (DAW)
environment. It also specifies interface attributes, such as naming for identification.

PluginInterface = audioPluginInterface(pluginParameters) specifies audio
plugin parameters, which are user-facing variables associated with audio plugin
properties. See audioPluginParameter for more details.

PluginInterface = audioPluginInterface(Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

2 Functions in Audio Toolbox

2-306

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;

 audioPluginInterface

2-307

 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW)
environment, the plugin property, Gain, synchronizes with a user-facing plugin
parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name,
vendor version, unique identification, number of input channels, and number of output
channels.

classdef monoGain < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'),...
 'PluginName','Simple Gain',...
 'VendorName','Cool Company',...

2 Functions in Audio Toolbox

2-308

 'VendorVersion','1.0.0',...
 'UniqueId','1a1Z',...
 'InputChannels',1,...
 'OutputChannels',1);
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Input Arguments
pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a
digital audio workstation (DAW) environment, they synchronize plugin class properties
with user-facing parameters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies the
name of the generated audio plugin as 'cool effect' and the vendor version as
'1.0.2'.

PluginName — Name of generated plugin
name of plugin class (default) | character vector

Name of your generated plugin, as seen by a host audio application, specified as a
comma-separated pair consisting of 'PluginName' and a string of up to 127 characters.
If 'PluginName' is not specified, the generated plugin is given the name of the audio
plugin class it is generated from.

 audioPluginInterface

2-309

VendorName — Vendor name of the plugin creator
' ' (default) | character vector

Vendor name of the plugin creator, specified as the comma-separated pair 'VendorName'
and a character vector of up to 127 characters.

VendorVersion — Vendor version
'1.0.0' (default) | dot-separated character vector

Vendor version used to track plugin releases, specified as a comma-separated pair
consisting of 'VendorVersion' and a dot-separated string of 1–3 integers in the range 0
to 9.
Example: '1'
Example: '1.4'
Example: '1.3.5'

UniqueId — Unique identifier of plugin
'MWap' (default) | four-element character vector

Unique identifier for your plugin, specified as a comma-separated pair consisting of
'UniqueID' and a four-character string, used for recognition in certain digital audio
workstation (DAW) environments.

InputChannels — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels'
and an integer or vector of integers. The input channels are the number of input data
arguments and associated channels (columns) passed to the processing function of your
audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument
containing 3 channels.
Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the
third contains 1 channel, and the fourth contains 5 channels.

Note This property is not applicable for audio source plugins, and must be omitted.

2 Functions in Audio Toolbox

2-310

OutputChannels — Output channels
2 (default) | integer | vector of integers

Output channels, specified a comma-separated pair consisting of 'OutputChannels'
and an integer or vector of integers. The output channels are the number of input data
arguments and associated channels (columns) passed from the processing function of
your audio plugin.
Example: 'OutputChannels',3 specifies the processing function to output one data
argument containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4
data arguments. The first argument contains 2 channels, the second contains 4 channels,
the third contains 1 channel, and the fourth contains 5 channels.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin | audioPluginSource

Functions
audioPluginParameter | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

 audioPluginInterface

2-311

audioPluginParameter
Specify audio plugin parameters

Syntax
pluginParameter = audioPluginParameter(propertyName)
pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description
pluginParameter = audioPluginParameter(propertyName) returns an object,
pluginParameter, that associates an audio plugin parameter to the audio plugin
property specified by propertyName. Use the plugin parameter object,
pluginParameter, as an argument to an audioPluginInterface function in your
plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench in
the MATLAB environment, plugin parameters are tunable, user-facing variables with
defined ranges mapped to controls. When you modify a parameter value using a control,
the associated plugin property is also modified. If the audio processing algorithm of the
plugin depends on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the environment
in which a plugin is run, see “Implementation of Audio Plugin Parameters” on page 2-328.

pluginParameter = audioPluginParameter(propertyName,Name,Value)
specifies audioPluginParameter properties using one or more Name,Value pair
arguments.

Examples

2 Functions in Audio Toolbox

2-312

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a
processing function that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an
audioPluginInterface object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin
property, Gain, to a plugin parameter, specify the first argument of
audioPluginParameter as the property name, 'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end

 audioPluginParameter

2-313

 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain',
'Label' as 'linear', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain',...
 'DisplayName', 'Awesome Gain',...
 'Label', 'linear',...
 'Mapping', {'lin',0,20}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the linear gain of an audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin
 properties
 Gain = 1;
 end

2 Functions in Audio Toolbox

2-314

 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Mapping', {'int',0,3}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithIntegerMapping)

 audioPluginParameter

2-315

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to
tune the gain of an audio signal in dB.

classdef pluginWithPowerMapping < audioPlugin
 properties
 Gain = 0;

2 Functions in Audio Toolbox

2-316

 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Label', 'dB', ...
 'Mapping', {'pow', 1/3, -140, 12}));
 end
 methods
 function out = process(plugin,in)
 dBGain = 10^(plugin.Gain/20);
 out = in*dBGain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithPowerMapping)

 audioPluginParameter

2-317

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to tune the center frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin
 properties
 EQ

2 Functions in Audio Toolbox

2-318

 CenterFrequency = 1000;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('CenterFrequency', ...
 'Mapping', {'log',100,10000}));
 end
 methods
 function plugin = pluginWithLogMapping
 plugin.EQ = multibandParametricEQ('NumEQBands',1, ...
 'PeakGains',20, ...
 'Frequencies',plugin.CenterFrequency);
 end
 function out = process(plugin,in)
 out = plugin.EQ(in);
 end
 function set.CenterFrequency(plugin,val)
 plugin.CenterFrequency = val;
 plugin.EQ.Frequencies = val;
 end
 function reset(plugin)
 plugin.EQ.SampleRate = getSampleRate(plugin);
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogMapping)

 audioPluginParameter

2-319

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the
relationship between a property and a parameter. You can use the plugin created from
this class to block or pass through the audio signal by tuning the PassThrough
parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin
 properties

2 Functions in Audio Toolbox

2-320

 PassThrough = true;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('PassThrough', ...
 'Mapping', {'enum','Block signal','Pass through'}));
 end
 methods
 function out = process(plugin,in)
 if plugin.PassThrough
 out = in;
 else
 out = zeros(size(in));
 end
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test
Bench.

audioTestBench(pluginWithLogicalEnumMapping)

 audioPluginParameter

2-321

'enum' for Enumeration Class Parameter Mapping

The following class definitions comprise a simple example of enumeration parameter
mapping for properties defined by an enumeration class. You can specify the operating
mode of the plugin created from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin

2 Functions in Audio Toolbox

2-322

 properties
 Mode = OperatingMode.boost;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Mode',...
 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
 end
 methods
 function out = process(plugin,in)
 switch (plugin.Mode)
 case OperatingMode.boost
 out = in * 2;
 case OperatingMode.cut
 out = in / 2;
 case OperatingMode.mute
 out = zeros(size(in));
 case OperatingMode.noise
 out = rand(size(in)) - 0.5;
 otherwise
 out = in;
 end
 end
 end
end

Enumeration Class Definition

classdef OperatingMode < int8
 enumeration
 boost (0)
 cut (1)
 mute (2)
 noise (3)
 end
end

To run the plugin, save the plugin and enumeration class definition files to a local folder.
Then call the Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

 audioPluginParameter

2-323

Input Arguments
propertyName — Name of audio plugin property
character vector

Name of the audio plugin property that you want to associate with a parameter, specified
as a character vector. Enter the property name exactly as it is defined in the property
section of your audio plugin class.

2 Functions in Audio Toolbox

2-324

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','Gain','Label','dB' specifies the display name of your
parameter as 'Gain' and the display label for parameter value units as 'dB'.

DisplayName — Display name of parameter
associated property name (default) | character vector

Display name of your parameter, specified as a comma-separated pair consisting of
'DisplayName' and a character vector. If 'DisplayName' is not specified, the name of
the associated property is used.

The display name of your parameter is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

Label — Display label for parameter value units
' ' (default) | character vector

Display label for parameter value units, specified as a comma-separated pair consisting of
'Label' and a character vector.

The display label for parameter value units is used in a digital audio workstation (DAW)
environment, and when using Audio Test Bench in the MATLAB environment.

The 'Label' name-value pair is ignored for nonnumeric parameters.

Mapping — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair
consisting of 'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated
parameter range.

The first element of the cell array is a character vector specifying the kind of mapping.
The valid values are 'lin', 'log', 'pow', 'int', and 'enum'. The subsequent

 audioPluginParameter

2-325

elements of the cell array depend on the kind of mapping. The valid mappings depend on
the property data type.

Property Data Type Valid Mappings Default
double 'lin', 'log', 'pow',

'int'
{'lin', 0, 1}

logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration names

Mappi
ng

Description Example

'lin' Specifies a linear relationship with
given minimum and maximum values.

property value = min + (max −min)
× parameter value

{'lin', 0, 24} specifies a linear
relationship with a minimum of 0 and
maximum of 24.

Simple Example: “Specify Parameter
Information” on page 2-314

'log' Specifies a logarithmic relationship
with given minimum and maximum
values, where the control position
maps to the logarithm of the property
value. The minimum value must be
greater than 0.

property value = min
× (max/min)(parameter value)

{'log', 1, 22050} specifies a
logarithmic relationship with a
minimum of 1 and a maximum of
22050.

Simple Example: “Logarithmic
Parameter Mapping” on page 2-318

'pow' Specifies a power law relationship with
given exponent, minimum, and
maximum values. The property value is
related to the control position raised to
the exponent:

property value = min + (max −min)
× parameter value exp

{'pow', 1/3, -140, 12} specifies a
power law relationship with an
exponent of 1/3, a minimum of –140,
and a maximum of 12.

Simple Example: “Power Parameter
Mapping” on page 2-316

2 Functions in Audio Toolbox

2-326

Mappi
ng

Description Example

'int' Quantizes the control position and
maps it to the range of consecutive
integers with given minimum and
maximum values.

property value = f loor
0.5 + min + (max −min)

× parameter value

{'int', 0, 3} specifies a linear,
quantized relationship with a minimum
of 0 and maximum of 3. The property
value is mapped as an integer in the
range 0 to 3.

Simple Example: “Integer Parameter
Mapping” on page 2-314

'enum'
(logical
)

Optionally provides character vectors
for display on the plugin dialog box.

{'enum','Block
signal','Passthrough'} specifies
the character vector 'Block signal'
if the parameter value is false and
'Passthrough' if the parameter
value is true.

Simple Example: “Enumeration for
Logical Properties Parameter
Mapping” on page 2-320

'enum'
(enume
ration
class)

Optionally provides character vectors
for the members of the enumeration
class.

{'enum', '+6 dB', '-6 dB',
'silence', 'white noise'}
specifies the character vectors '+6
dB', '-6 dB', 'silence', and
'white noise'.

Simple Example: “'enum' for
Enumeration Class Parameter
Mapping” on page 2-322

For nontrivial examples of audio plugin parameter mapping, see “Audio Plugin Example
Gallery”.

 audioPluginParameter

2-327

Definitions

Implementation of Audio Plugin Parameters
Audio plugin parameters are visible and tunable in both the MATLAB and digital audio
workstation (DAW) environments.

MATLAB Environment. Use Audio Test Bench to interact with plugin parameters in
the MATLAB environment.

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to a
DAW environment. The DAW environment determines the exact layout of plugin
parameters as seen by the plugin user.

2 Functions in Audio Toolbox

2-328

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin | audioPluginSource

Functions
audioPluginInterface | generateAudioPlugin | validateAudioPlugin

Topics
“Design an Audio Plugin”

Introduced in R2016a

 audioPluginParameter

2-329

configureMIDI
Configure MIDI connections between audio object and MIDI controller

Syntax
configureMIDI(audioObject)
configureMIDI(audioObject,propertyName)
configureMIDI(audioObject,propertyName,controlNumber)
configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue)

Description
configureMIDI(audioObject) opens a MIDI configuration user interface (UI). Use the
UI to synchronize parameters of the plugin, audioObject, to MIDI controls on your
default MIDI device. You can also generate MATLAB code corresponding to the MIDI
configuration developed using the configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or
host operating system. Use midiid to get the device name corresponding to your MIDI
device.

configureMIDI(audioObject,propertyName) makes the property, propertyName,
respond to any control on the default MIDI device.

configureMIDI(audioObject,propertyName,controlNumber) makes the property
respond to the MIDI control specified by controlNumber.

configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue) makes the property respond to the MIDI control specified by
controlNumber on the device specified by deviceNameValue.

2 Functions in Audio Toolbox

2-330

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

 configureMIDI

2-331

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI
controls.

To disconnect the property and control currently displayed on your configureMIDI
UI, click Reset Control at any time.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do
not need to reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin);

2 In the UI, select a property to synchronize with your default MIDI device.

2 Functions in Audio Toolbox

2-332

3 On your MIDI device, operate the control that you want to synchronize to the
selected plugin property. The control appears in the Operate MIDI control to
synchronize box.

4 Select the Generate MATLAB Code check box.

 configureMIDI

2-333

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that
you developed.

2 Functions in Audio Toolbox

2-334

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;
configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizer.

 configureMIDI

2-335

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1003

device =

nanoKONTROL2

Use configureMIDI to synchronize your chosen MIDI control, specified by
controlNumber, with a property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizer.

parametricEQPlugin = audiopluginexample.ParametricEqualizer;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1003

2 Functions in Audio Toolbox

2-336

device =

nanoKONTROL2

Use configureMIDI to synchronize a property with your chosen MIDI control, specified
by controlNumber, on your chosen MIDI device, specified by device.
configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device)

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

propertyName — Name of object property
character vector

Name of the object property, specified as a character vector. Enter the property name
exactly as it is defined in the property section of your audio plugin or Audio Toolbox
System object.

controlNumber — MIDI device control number
integer values

MIDI device control number, specified as an integer. The value is assigned to the control
by the device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
character vector

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a character vector. If you do not specify a MIDI device name, the default
MIDI device is used.

Limitations
For MIDI connections established by configureMIDI, moving a MIDI control sends a
callback to update the associated property values. To synchronize your MIDI device in an

 configureMIDI

2-337

audio stream loop, you might need to use the drawnow command for the callback to
process immediately. For efficiency, use the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio object, uncomment the drawnow
limitrate command from this code:

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter;
dRC = compressor;

configureMIDI(compressor,'Threshold');

while ~isDone(fileReader)
 input = fileReader();
 output = dRC(input);
 deviceWriter(output);
% drawnow limitrate;
end

release(fileReader);
release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as
dsp.SpectrumAnalyzer, dsp.TimeScope, or dsp.ArrayPlot, the drawnow command
is not required.

See Also
Classes
audioPlugin | audioPluginSource

Functions
disconnectMIDI | getMIDIConnections | midicallback | midicontrols | midiid
| midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

2 Functions in Audio Toolbox

2-338

Introduced in R2016a

 configureMIDI

2-339

designParamEQ
Design parametric equalizer

Syntax
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)

Description
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order
parametric equalizer with specified gain, center frequency, and bandwidth. B and A are
matrices of numerator and denominator coefficients, with columns corresponding to
cascaded second-order section (SOS) filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies
whether the parametric equalizer is implemented with second-order sections or fourth-
order sections (FOS).

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized
bandwidth of the bands of your parametric equalizer.

N = [2,4];
gain = [6,-4];
centerFreq = [0.25,0.75];
bandwidth = [0.12,0.10];

Generate the filter coefficients using the specified parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

2 Functions in Audio Toolbox

2-340

Create a filter matrix compatible with fvtool.

SOS = [B',[ones(sum(N)/2,1),A']];

Visualize your filter design.

fvtool(SOS)

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

 designParamEQ

2-341

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav',...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);
 count = count+1;
end
reset(fileReader);

Design a SOS parametric equalizer.

N = [4,4];
gain = [-25,35];
centerFreq = [0.01,0.5];
bandwidth = [0.35,0.5];
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];
fvtool(SOS,...
 'Fs',fileReader.SampleRate,...
 'FrequencyScale','Log');

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port',...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

2 Functions in Audio Toolbox

2-342

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...
 'WindowLength',frameSize,...
 'Title','Original and Equalized Signals',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ, and
filter an audio stream.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav',...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

 designParamEQ

2-343

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 x = fileReader();
 deviceWriter(x);
 count = count+1;
end
reset(fileReader);

Design FOS parametric equalizer coefficients.

N = [2,4];
gain = [5,10];
centerFreq = [0.025,0.65];
bandwidth = [0.025,0.35];
mode = 'fos';

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode);

Construct FOS IIR filters.

section1 = dsp.IIRFilter('Numerator',B(:,1)','Denominator',[1,A(:,1)']);
section2 = dsp.IIRFilter('Numerator',B(:,2)','Denominator',[1,A(:,2)']);

Visualize the frequency response of your parametric equalizer.

[H1,w] = freqz(section1,8192,sampleRate);
H2 = freqz(section2,8192,sampleRate);

H = 20.*log10(abs(H1.*H2));

semilogx(w,H);
title('Magnitude Response (dB)')
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
grid on

2 Functions in Audio Toolbox

2-344

Construct a spectrum analyzer to visualize the original audio signal and the audio signal
passed through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...
 'WindowLength',frameSize,...
 'Title','Original and Equalized Signals',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the filtered audio signal, and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 x = fileReader();
 y = section1(x);
 z = section2(y);

 scope([x(:,1),z(:,1)]);

 deviceWriter(z);

 count = count + 1;
end

release(fileReader)
release(deviceWriter)
release(scope)

Input Arguments
N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be even integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 designParamEQ

2-345

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq.
Elements of the vector must be real-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

Normalized center frequency of equalizer bands, specified as a scalar or row vector of
real values in the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/
sample). If centerFreq is specified as a row vector, separate equalizers are designed for
each element of centerFreq.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as
centerFreq. Elements of the vector are specified as real values in the range 0 to 1,
where 1 corresponds to the Nyquist frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter),
normalized bandwidth is measured at the 3 dB attenuation point: 10 × log10 0.5 .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor
as

Q = 2 octave bandwidth

2 octave bandwidth − 1
.

Then convert to bandwidth

bandwidth = centerFreq
Q .

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

2 Functions in Audio Toolbox

2-346

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' –– Implements your equalizer as cascaded second-order filters.
• 'fos' –– Implements your equalizer as cascaded fourth-order filters. Because fourth-

order sections do not require the computation of roots, they are generally more
computationally efficient.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. Each column of B corresponds to the
numerator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. Each column of A corresponds to the
denominator coefficients of a different second-order or fourth-order section of your
cascaded equalizer.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 designParamEQ

2-347

See Also
Functions
designShelvingEQ | designVarSlopeFilter

System Objects
dsp.BiquadFilter | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2 Functions in Audio Toolbox

2-348

designShelvingEQ
Design shelving equalizer

Syntax
[B,A] = designShelvingEQ(gain,slope,Fc)
[B,A] = designShelvingEQ(gain,slope,Fc,type)

Description
[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with the
specified gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded
second-order section (SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a
low-shelving or high-shelving equalizer.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;
slope2 = 0.75;
slope3 = 1;

 designShelvingEQ

2-349

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc);
[B2,A2] = designShelvingEQ(gain,slope2,Fc);
[B3,A3] = designShelvingEQ(gain,slope3,Fc);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];
SOS2 = [B2',[1,A2']];
SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(...
 dsp.BiquadFilter('SOSMatrix',SOS1),...
 dsp.BiquadFilter('SOSMatrix',SOS2),...
 dsp.BiquadFilter('SOSMatrix',SOS3),...
 'Fs',Fs,...
 'FrequencyScale','Log');

legend('slope = 0.1',...
 'slope = 0.5',...
 'slope = 1');

Filter Audio Using Low-Shelf Equalizer

Design a low-shelf equalizer, and then use it to filter an audio signal.

Construct audio file reader and audio device writer objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav',...
 'SamplesPerFrame',frameSize);

2 Functions in Audio Toolbox

2-350

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = step(fileReader);
 play(deviceWriter,audio);
 count = count+1;
end
reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;
slope = 3;
Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

Visualize your equalizer design.

SOS = [B',[1,A']];
fvtool(dsp.BiquadFilter('SOSMatrix',SOS),...
 'Fs',fileReader.SampleRate,...
 'FrequencyScale','Log');

Construct a biquad filter object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port',...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer object to visualize the original audio signal and the audio
signal passed through your low-shelf equalizer.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate,...
 'PlotAsTwoSidedSpectrum',false,...

 designShelvingEQ

2-351

 'FrequencyScale','Log',...
 'FrequencyResolutionMethod','WindowLength',...
 'WindowLength',frameSize,...
 'Title','Original and Equalized Signal',...
 'ShowLegend',true,...
 'ChannelNames',{'Original Signal','Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count+1;
end

release(fileReader)
release(scope)
release(deviceWriter)

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The three
shelving equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency
for three shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain1 = -6;
gain2 = 6;
gain3 = 12;

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficients using the specified parameters.

2 Functions in Audio Toolbox

2-352

[B1,A1] = designShelvingEQ(gain1,slope,Fc,'hi');
[B2,A2] = designShelvingEQ(gain2,slope,Fc,'hi');
[B3,A3] = designShelvingEQ(gain3,slope,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[1,A1']];
SOS2 = [B2',[1,A2']];
SOS3 = [B3',[1,A3']];

Visualize your filter design.

fvtool(dsp.BiquadFilter('SOSMatrix',SOS1),...
 dsp.BiquadFilter('SOSMatrix',SOS2),...
 dsp.BiquadFilter('SOSMatrix',SOS3),...
 'Fs',Fs);
legend('gain = -6 dB',...
 'gain = 6 dB',...
 'gain = 12 dB',...
 'Location','NorthWest')

 designShelvingEQ

2-353

Input Arguments
gain — Peak gain (dB)
real scalar in the range –12 to 12

Peak gain in dB, specified as a real scalar in the range –12 to 12.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

slope — Slope coefficient
real scalar in the range 0 to 5

2 Functions in Audio Toolbox

2-354

Slope coefficient, specified as a real scalar in the range 0 to 5.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'–– Low shelving equalizer
• 'hi'–– High shelving equalizer

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
three-element column vector

Numerator filter coefficients of the designed second-order IIR filter, retuned as a three-
element column vector.

A — Denominator filter coefficients
two-element column vector.

Denominator filter coefficients of the designed second-order IIR filter, returned as a two-
element column vector. A does not include the leading unity coefficient.

 designShelvingEQ

2-355

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
designParamEQ | designVarSlopeFilter

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

2 Functions in Audio Toolbox

2-356

designVarSlopeFilter
Design variable slope lowpass or highpass IIR filter

Syntax
[B,A] = designVarSlopeFilter(slope,Fc)
[B,A] = designVarSlopeFilter(slope,Fc,type)

Description
[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the
specified slope and cutoff frequency. B and A are matrices of numerator and denominator
coefficients, with columns corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a
lowpass or highpass filter.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass
IIR filters. The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10000/(Fs/2);
Fc2 = 16000/(Fs/2);

Design the filter coefficients using the specified parameters.

 designVarSlopeFilter

2-357

[B1,A1] = designVarSlopeFilter(slope,Fc1);
[B2,A2] = designVarSlopeFilter(slope,Fc2);

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];
SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,'Fs',Fs);

legend('Fc = 10000 Hz',...
 'Fc = 16000 Hz',...
 'Location','SouthWest');

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter.
Use your lowpass filter to process an audio signal.

Construct audio file reader and audio device writer System objects. Use the sample rate
of the reader as the sample rate of the writer. Call setup to reduce the computational
load of initialization in an audio stream loop.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 'SampleRate',sampleRate);

setup(fileReader);
setup(deviceWriter,ones(frameSize,2));

Play the audio signal through your device.

count = 0;
while count < 2500

2 Functions in Audio Toolbox

2-358

 audio = fileReader();
 deviceWriter(audio);
 count = count+1;
end
reset(fileReader);

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized frequency cutoff.

[B,A] = designVarSlopeFilter(12,0.15);

Visualize your filter design.

SOS = [B',[ones(4,1),A']];
fvtool(SOS, ...
 'Fs',sampleRate);

Construct a biquad filter System object.

myFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Construct a spectrum analyzer System object to visualize the original audio signal and the
audio signal passed through your lowpass filter.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',sampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',frameSize, ...
 'Title','Original and Equalized Signal', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

setup(scope,ones(frameSize,2));
count = 0;
while count < 2500
 originalSignal = fileReader();
 filteredSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),filteredSignal(:,1)]);
 deviceWriter(filteredSignal);
 count = count+1;
end

 designVarSlopeFilter

2-359

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using
designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff
frequency.

Fs = 48e3;
slope1 = 18;
slope2 = 36;
Fc = 4000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope1,Fc,'hi');
[B2,A2] = designVarSlopeFilter(slope2,Fc,'hi');

Create filter matrices compatible with fvtool.

SOS1 = [B1',[ones(4,1),A1']];
SOS2 = [B2',[ones(4,1),A2']];

Visualize your filter design.

fvtool(SOS1,SOS2,...
 'Fs',Fs,...
 'FrequencyScale','Log');
legend('slope = 18 dB/octave',...
 'slope = 36 dB/octave',...
 'Location','NorthWest')

2 Functions in Audio Toolbox

2-360

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by
the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

 designVarSlopeFilter

2-361

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...

2 Functions in Audio Toolbox

2-362

 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRCompressor)

 designVarSlopeFilter

2-363

Input Arguments
slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1
corresponds to the Nyquist frequency (π rad/sample).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'–– Lowpass filter
• 'hi'–– Highpass filter

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
3-by-4 matrix

Numerator filter coefficients, returned as a 3-by-4 matrix. Each column of B corresponds
to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix

2 Functions in Audio Toolbox

2-364

Denominator filter coefficients, returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your
cascaded IIR filter.

A does not include the leading unity coefficient for each section.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
designParamEQ | designShelvingEQ

System Objects
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

 designVarSlopeFilter

2-365

disconnectMIDI
Disconnect MIDI controls from audio object

Syntax
disconnectMIDI(audioObject)

Description
disconnectMIDI(audioObject) disconnects MIDI controls from your audio object,
audioObject. Only those MIDI connections established using configureMIDI are
disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

2 Functions in Audio Toolbox

2-366

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI
connections you configured are saved as a structure. View details of the MIDI connections
using dot notation.

myMIDIConnections = getMIDIConnections(echoPlugin);
myMIDIConnections.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object
and your MIDI device.

disconnectMIDI(echoPlugin);

Get MIDI connections of echoPlugin and verify that you have successfully disconnected
MIDI controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

See Also
Classes
audioPlugin | audioPluginSource

 disconnectMIDI

2-367

Functions
configureMIDI | getMIDIConnections | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

2 Functions in Audio Toolbox

2-368

fdesign.parameq
Parametric equalizer filter specification

Syntax
d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description
d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a
parametric equalizer filter design object, where spec is a non-case sensitive character
vector. The choices for spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'
• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'
• 'N, F0, BW, Gref, G0, GBW'
• 'N, F0, BW, Gref, G0, GBW, Gp'
• 'N, F0, Fc, Qa, G0'
• 'N, F0, Fc, S, G0'
• 'N, F0 ,BW, Gref, G0, GBW, Gst'
• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

 fdesign.parameq

2-369

Paramet
er

Definition Unit

BW Bandwidth
BWp Passband Bandwidth
BWst Stopband Bandwidth
Gref Reference Gain decibels
G0 Center Frequency Gain decibels
GBW Gain at which Bandwidth

(BW) is measured
decibels

Gp Passband Gain decibels
Gst Stopband Gain decibels
N Filter Order
F0 Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain

GBW

Flow Lower Frequency at Gain
GBW

Qa Quality Factor
S Slope Parameter for

Shelving Filters

Regardless of the specification chosen, there are some conditions that apply to the
specification parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst <

Gref
• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be
specified as a scalar trailing the other numerical values provided, and is assumed to be in
Hz.

2 Functions in Audio Toolbox

2-370

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst', ...
 4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ,'cheby2','SystemObject',true);
fvtool(parametricEQBiquad)

 fdesign.parameq

2-371

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a
quality factor of 10, and an 8 dB boost gain.

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);
parametricEQBiquad = design(parametricEQ,'SystemObject',true);
fvtool(parametricEQBiquad)

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

N = 4; % Filter order
F0 = 1; % Center Frequency (normalized)
Fc = 0.4; % Cutoff Frequency (normalized)
G0 = 10; % Center Frequency Gain (dB)

2 Functions in Audio Toolbox

2-372

S1 = 1.5; % Slope for filter design 1
S2 = 3; % Slope for filter design 2

filter = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S1,G0);
filterDesignS1 = design(filter,'SystemObject',true);

filter.S = S2;
filterDesignS2 = design(filter,'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);
legend(filterVisualization,'Slope = 1.5','Slope = 3');

 fdesign.parameq

2-373

See Also
design | designParamEQ | designShelvingEQ | designVarSlopeFilter | fdesign
| multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

2 Functions in Audio Toolbox

2-374

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax
generateAudioPlugin className
generateAudioPlugin options className

Description
generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB
class specified by className. See Supported Compilers for a list of compilers supported
by generateAudioPlugin.

generateAudioPlugin options className specifies nondefault output folder, file
name, or file type. You can use the -juceproject option to create a zip file containing
generated C/C++ code and a JUCER project. Options can be specified in any grouping,
and in any order.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

A VST 2 plugin named Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin

generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

 generateAudioPlugin

2-375

https://www.mathworks.com/support/compilers.html

A VST 2 plugin named Echo is saved to your specified folder. The extension of your plugin
depends on your operating system.

Specify File Name of Generated Plugin
generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

A VST 2 plugin named awesomeEffect is saved to your current folder. The extension of
your plugin depends on your operating system.

Specify Output Folder and File Name of Generated Plugin
generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

A VST 2 plugin named coolEffect is saved to your specified folder. The extension of
your plugin depends on your operating system.

Generate win32 Plugin from win64 System
generateAudioPlugin -win32 audiopluginexample.Echo

A 32-bit VST 2 plugin named Echo.dll is saved to your current folder.

Generate Zip File Compatible with JUCE 5.3.2
generateAudioPlugin -juceproject audiopluginexample.Echo

A zip file containing generated C/C++ code and a JUCER project file suitable for use with
JUCE 5.3.2 is saved to your current folder.

Input Arguments
options — Options to specify output folder, plugin name, and file type
-outdir folder | -output fileName | -win32

Options can be specified in any grouping, and in any order.

2 Functions in Audio Toolbox

2-376

Option Description
-outdir folder Generates a plugin or zip file to a specific folder. By

default, the generated plugin is placed in the current
folder. If folder is not in the current folder, specify the
exact path.

-output fileName Specifies the file name of the generated plugin or zip file.
The appropriate extension is appended to the fileName
based on the platform on which the plugin or zip file is
generated. By default, the plugin or zip file is named
after the class.

-win32 Creates a 32-bit audio plugin. Valid only on win64.
-juceproject Creates a zip file containing generated C/C++ code and

a JUCER project file suitable for use with JUCE 5.3.2. You
can use the generated zip file to modify the generated
plugin or compile it to a format other than VST 2.4. This
option requires a MATLAB Coder™ license. To use the
generated files with JUCE, you must obtain your own
appropriately licensed copy of JUCE.

className — Name of the plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It
must derive from either the audioPlugin class or the audioPluginSource class.

You can specify the plugin class to generate by specifying its class name or file name. For
example, the following syntaxes perform equivalent operations:

• generateAudioPlugin myPlugin
• generateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a
package, you must specify the package as a file path. For example, the following syntaxes
perform equivalent operations:

• generateAudioPlugin myPluginPackage.myPlugin
• generateAudioPlugin +myPluginPackage/myPlugin.m

 generateAudioPlugin

2-377

Limitations
Build problems can occur when using folder names with spaces. For more information,
see “Build Process Support for Folder Names with Spaces or Special Characters”
(Simulink Coder) and Why is the build process failing for a shipped model in Simulink or
for a model run in Accelerator mode?.

Definitions

Generated Plugin File Extension
The extension of your generated plugin depends on your operating system.

Operating System File Extension
Windows .dll
OSX .vst

See Also
Audio Test Bench | audioPlugin | audioPluginSource | loadAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

2 Functions in Audio Toolbox

2-378

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

integratedLoudness
Measure integrated loudness and loudness range

Syntax
loudness = integratedLoudness(audioIn,Fs)
loudness = integratedLoudness(audioIn,Fs,channelWeights)
[loudness,loudnessRange] = integratedLoudness(___)

Description
loudness = integratedLoudness(audioIn,Fs) returns the integrated loudness of
an audio signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128
standards define the algorithms to calculate integrated loudness.

loudness = integratedLoudness(audioIn,Fs,channelWeights) specifies the
channel weights used to compute the integrated loudness. channelWeights must be a
row vector with the same number of elements as the number of channels in audioIn.

[loudness,loudnessRange] = integratedLoudness(___) returns the loudness
range of the audio signal using either of the previous syntaxes. The EBU R 128 Tech 3342
standard defines the loudness range computation.

Examples

Determine Integrated Loudness

Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz
sample rate.

sampleRate = 48e3;
increment = sampleRate*2;

 integratedLoudness

2-379

amplitude = 10^(0/20);
frequency = 1e3;

sineGenerator = audioOscillator(...
 'SampleRate',sampleRate,...
 'SamplesPerFrame',increment,...
 'Amplitude',amplitude,...
 'Frequency', frequency);

signal = sineGenerator();

Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal,sampleRate)

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four
elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault
channel weighting vector.

standardLoudness = integratedLoudness(signal,fs,weightingVector)
nonStandardLoudness = integratedLoudness(signal,fs)

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
x1 = x(1:fs*5,:);
x2 = x(5e5:5e5+5*fs,:);
x3 = x(end-5*fs:end,:);

Calculate the loudness and loudness range of the total signal and of each interval.

2 Functions in Audio Toolbox

2-380

[L,LRA] = integratedLoudness(x,fs);
[L1,LRA1] = integratedLoudness(x1,fs);
[L2,LRA2] = integratedLoudness(x2,fs);
[L3,LRA3] = integratedLoudness(x3,fs);

fprintf(['Loudness: %0.2f\n',...
 'Loudness range: %0.2f\n\n',...
 'Beginning loudness: %0.2f\n',...
 'Beginning loudness range: %0.2f\n\n',...
 'Middle loudness: %0.2f\n',...
 'Middle loudness range: %0.2f\n\n',...
 'End loudness: %0.2f\n',...
 'End loudness range: %0.2f\n'],...
 L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Input Arguments
audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio
channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

• If you use the default channelWeights, the input signal has a maximum of five
channels. Specify the channels in this order: [Left, Right, Center, Left surround, Right
surround].

• If you specify nondefault channelWeights, the input signal must have the same
number of columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

 integratedLoudness

2-381

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the channels of the audioIn matrix in this order: [Left, Right,
Center, Left surround, Right surround].

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center,
Left surround, Right surround].
Data Types: single | double

Output Arguments
loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The
algorithm computes the loudness by breaking down the audio signal into 0.4-second
segments with 75% overlap. If the input signal is less than 0.4 seconds, loudness is
returned empty.
Data Types: single | double

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes
the loudness range by breaking down the audio into 3-second segments with 2.9-second
overlap. If the input signal is less than three seconds, loudnessRange is returned empty.
Data Types: single | double

2 Functions in Audio Toolbox

2-382

Algorithms
The integratedLoudness function returns the integrated loudness and loudness range
(LRA) of an audio signal. You can specify any number of channels and nondefault channel
weights used for loudness measurements. The integratedLoudness algorithm is
described for the general case of n channels.

Integrated Loudness and Loudness Range
The input channels, x, pass through a K-weighted weightingFilter. The K-weighted
filter shapes the frequency spectrum to reflect perceived loudness.

Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment of a channel.

 integratedLoudness

2-383

• w is the segment length in samples.
2 The momentary loudness, mL, is computed for each segment:

mLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.
3 The momentary power is gated using the momentary loudness calculation:

mPi mP j

j = i mLi ≥ − 70
4 The relative threshold, Γ, is computed:

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

5 The momentary power subset, mPj, is gated using the relative threshold:

mP j mPk

k = j mP j ≥ Γ
6 The momentary power segments are averaged:

P = 1
k ∑k mPk

7 The integrated loudness is computed by passing the mean momentary power subset,
P, through the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc LUFS

2 Functions in Audio Toolbox

2-384

Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. The power (mean square) of each segment of the K-weighted channels is
calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.
3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70
4 The gated short-term loudness is converted back to linear, and then the mean is

taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j
5 The short-term loudness subset, sLj, is gated using the relative threshold:

sL j sLk

k = j sL j ≥ K
6 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as

between the 10th and 95th percentiles of the distribution, and is returned in loudness
units (LU).

 integratedLoudness

2-385

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to

Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level
of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128
Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
loudnessMeter | weightingFilter

Blocks
Loudness Meter

Introduced in R2016b

2 Functions in Audio Toolbox

2-386

getMIDIConnections
Get MIDI connections of audio object

Syntax
connectionInfo = getMIDIConnections(audioObject)

Description
connectionInfo = getMIDIConnections(audioObject) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio
object, audioObject. Only those MIDI connections established using configureMIDI
are returned.

The connectionInfo structure contains a substructure for each tunable property of
audioObject that has established MIDI connections. Each substructure contains the
control number, the device name of the corresponding MIDI control, and the property
mapping information (mapping rule, minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls
on the default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);
configureMIDI(echoEffect,'Gain1' ,1002);
configureMIDI(echoEffect,'Delay2',1003);
configureMIDI(echoEffect,'Gain2' ,1004);

 getMIDIConnections

2-387

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =

 Delay1: [1x1 struct]
 Gain1: [1x1 struct]
 Delay2: [1x1 struct]
 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the
audioPlugin class or an object of a compatible Audio Toolbox System object.

Output Arguments
connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and MIDI
devices, returned as a structure. Only those MIDI connections established using
configureMIDI are returned. The connectionInfo structure contains a substructure
for each established MIDI connection. Each substructure contains the control number, the
device name of the corresponding MIDI control, and the property mapping information
(mapping rule, minimum value, and maximum value).

2 Functions in Audio Toolbox

2-388

See Also
Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | midicallback | midicontrols | midiid |
midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

 getMIDIConnections

2-389

loadAudioPlugin
Load VST, VST3, and AU plugins into MATLAB environment

Syntax
hostedPlugin = loadAudioPlugin(pluginpath)

Description
hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST, VST3, or AU
audio plugin specified by pluginpath. On Windows, you can load VST and VST3 plugins.
On macOS, you can load AU, VST, and VST3 plugins.

Your hosted plugin has two display modes: Parameters and Properties. The default
display mode is Properties.

• Parameters –– Interact with normalized parameter values of the hosted plugin using
set and get functions.

• Properties –– Interact with heuristically interpreted parameters with real-world
values. You can use standard dot notation to set and get the values while using this
mode.

You can specify the display mode of the hosted plugin using standard dot notation, for
example:

hostedPlugin.DisplayMode = 'Parameters';

See “Host External Audio Plugins” for a discussion of display modes and a walkthrough of
both modes of interaction.

You can interact with and exercise the hosted plugin using the following functions.

Process Audio

• audioOut = process(hostedPlugin,audioIn)

2 Functions in Audio Toolbox

2-390

Returns an audio signal processed according to the algorithm and parameters of the
hosted plugin. For source plugins, call process without an audio input.

Set and Get Normalized Parameter Values

• value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized
values are in the range [0,1]. You can specify a parameter by its name or by its index.
To specify the name, use a character vector.

• setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue.
Normalized values are in the range [0,1].

Get High-Level Information About the Hosted Plugin

• dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display
labels of the hosted plugin.

• pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.

Set the Environment in Which the Plugin Is Run

• frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its
processing function (source plugins only).

• setSamplesPerFrame(hostedPlugin,frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its
processing function (source plugins only).

• setSampleRate(hostedPlugin,sampleRate)

Sets the sample rate of the hosted plugin.
• sampleRate = getSampleRate(hostedPlugin)

Returns the sample rate in Hz at which the plugin is being run.

 loadAudioPlugin

2-391

Examples

Host External Plugins in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin in
MATLAB®.

Use the fullfile command to determine the full path to the oscillator VST plugin and
parametric equalizer VST plugin included with Audio Toolbox™. If you are using a Mac,
replace the .dll file extension with .vst.

oscPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
EQPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

Create external plugin objects by calling loadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);
hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either the externalAudioPlugin or
externalAudioSourcePlugin class. Because oscillator.dll is a source audio
plugin, the hosted object derives from externalAudioSourcePlugin. Use class() to
verify the classes of the hosted plugins.

class(hostedPlugin)

ans =

 'externalAudioPlugin'

class(hostedSourcePlugin)

ans =

 'externalAudioPluginSource'

2 Functions in Audio Toolbox

2-392

Call the hosted plugins to display basic information about them. This information includes
the format, the plugin name, the number of channels in and out, and the tunable
properties of the plugin. Source plugins also display the frame size of the plugin.

hostedSourcePlugin
hostedPlugin

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Frequency: 100 Hz
 Amplitude: 1 AU
 DCOffset: 0 AU

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 LowPeakGain: 0 dB
 LowCenterFrequency: 100 Hz
 LowQFactor: 2
 MediumPeakGain: 0 dB
 MediumCenterFrequency: 1000 Hz
 MediumQFactor: 2
 HighPeakGain: 0 dB
 HighCenterFrequency: 10000 Hz
 HighQFactor: 2

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes
to your audio device. Set the sample rate of the hosted plugin to the sample rate of the
input to the plugin.

 loadAudioPlugin

2-393

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using
a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

2 Functions in Audio Toolbox

2-394

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || ...
 (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

Input Arguments
pluginpath — Location of external plugin
character vector | string

Location of the external plugin, specified as a character vector. Use the full path to
specify the audio plugin you want to host in MATLAB. If the plugin is located in the
current folder, specify it by its name.
Example: loadAudioPlugin('coolPlugin.dll')
Example: loadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll')

Plugin Path for Mac

For macOS, the plugin locations are predetermined depending on if the plugin was saved
system wide or for a particular user.

This table shows the system-wide paths.

Plugin Type Path
VST2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU /Library/Audio/Plug-Ins/Components/coolPlugin.component

This table shows the user-specific paths.

 loadAudioPlugin

2-395

Plugin Type Path
VST2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU ~/Library/Audio/Plug-Ins/Components/coolPlugin.component

Output Arguments
hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

Object of an external plugin, derived from the externalAudioPlugin or
externalAudioSourcePlugin class. You can interact with the hosted plugin as a DAW
would, with the additional functionality of the MATLAB environment.

Limitations
The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit
plugins using the loadAudioPlugin function.

See Also
audioPlugin | audioPluginSource | externalAudioPlugin |
externalAudioPluginSource

Topics
“Host External Audio Plugins”

Introduced in R2016b

2 Functions in Audio Toolbox

2-396

midicallback
Call function handle when MIDI controls change value

Syntax
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
oldFunctionHandle = midicallback(midicontrolsObject,[])
currentFunctionHandle = midicallback(midicontrolsObject)

Description
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
sets functionHandle as the function handle called when midicontrolsObject
changes value, and returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the
function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the
current function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous
function with your MIDI controls object, mc.

mc = midicontrols;
midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on
the command line.

 midicallback

2-397

 0.5079

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control. Make
the axis constant.

axis([0,2*pi,-1,1]);
axis manual
hold on
sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

2 Functions in Audio Toolbox

2-398

Use the midicallback function to associate your sinePlotter function with the
control specified by your midicontrolsObject. Move your specified MIDI control. The
plot updates automatically with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

 midicallback

2-399

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use
midicallback to associate your MIDI control object with the function you created.
Verify that your object is associated with your function.

displayControlValue = @(object) disp(midiread(object));
midicallback(midicontrolsObject,displayControlValue);
currentFunctionHandle = midicallback(midicontrolsObject)

2 Functions in Audio Toolbox

2-400

currentFunctionHandle =

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on
the command line.

 0.3095

 0.4603

 0.6746

 0.7381

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to
two significant digits. Use midicallback to associate your MIDI controls object with the
function you created. Return the old function handle.
displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));
oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91
0.83
0.67
0.49
0.29
0.18
0.05

Remove the association between the object and the function. Return the old function
handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

 midicallback

2-401

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)
axis([0,10,-1.1,1.1]);
ylabel('Amplitude');
xlabel('Time (s)');
title('Sine Plot')
legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function.
Use midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency
updates when you move MIDI controls.

midicontrolsObject = midicontrols;
plotSineHandle = @plotSine;
midicallback(midicontrolsObject,plotSineHandle);

2 Functions in Audio Toolbox

2-402

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

functionHandle — New function handle
function handle

New function handle, specified as a function handle that contains one input argument.
The new function handle is called when midicontrolsObject changes value. For
information on what function handles are, see “Function Handles” (MATLAB).

 midicallback

2-403

Output Arguments
oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function
handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function
handle.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols |
midiid | midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

2 Functions in Audio Toolbox

2-404

midicontrols
Open group of MIDI controls for reading

Syntax
midicontrolsObject = midicontrols
midicontrolsObject = midicontrols(controlNumbers)
midicontrolsObject = midicontrols(controlNumbers,initialValues)
midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description
midicontrolsObject = midicontrols returns an object that listens to all controls on
your default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If you
call midiread before a control is moved, midiread returns the initial value of your
midicontrols object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls
specified by controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues)
specifies initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
specifies the MIDI device your midicontrols object listens to, using any of the previous
syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies the
range of values returned by midiread and accepted as initialValues for
midicontrols and as controlValues for midisync.

 midicontrols

2-405

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols
midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

Move any control on your MIDI device. Use midiread to return the most recent value of
the last control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

2 Functions in Audio Toolbox

2-406

midicontrolsObject = midiread(midicontrolsObject);

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...
 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumbers =

 1081 1085
 1082 1087

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

 midicontrols

2-407

ans =

 0.0873 0.5000
 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial
value for all controls.
initialValue = 12;
midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified
controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the MATLAB
command line:

setpref midi DefaultDevice BCF2000

2 Functions in Audio Toolbox

2-408

This preference persists across MATLAB sessions. You do not need to set it again unless
you want to change your default device.

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with
identification number 1001. Create a midicontrols object, which listens to control
number 1001 on your Behringer BCF2000 device.

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments
controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid to
interactively identify the control numbers of your device. See “MIDI Device Control
Numbers” on page 2-411 for an advanced explanation of how controlNumbers are
determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object
responds to any control on your MIDI device.
Example: 1081
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as
controlNumbers. If you specify initialValues as a scalar, all controls specified by
controlNumbers are assigned that value.

The value associated with your MIDI controls cannot be determined until you move a
MIDI control. If you specify an initial value associated with your MIDI control, the initial
value is returned by the midiread function until the MIDI control is moved.

 midicontrols

2-409

• If OutputMode is specified as 'normalized', then initial values must be in the range
[0,1]. Actual initial values are quantized and can be slightly different from initial
values specified when your midicontrols object is created.

• If OutputMode is specified as 'rawmidi', then initial values must be integers in the
range [0,127]

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

deviceName — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system,
specified as a string. The specified deviceName can be a substring of the exact name of
your device. If you do not specify deviceName, the default MIDI device is used. See “Set
the Default MIDI Device” on page 2-408 for an example of specifying a default MIDI
device.

If you do not set a default MIDI device, the host operating system chooses the default
device in an unspecified way. As a best practice, use midiid to identify the name of the
device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'
Data Types: char | string

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your midicontrols
object is called by midiread, then values in the range [0,1] are returned.

• 'rawmidi' — Values of your MIDI control are not normalized. If your midicontrols
object is called by midiread, then integer values in the range [0,127] are returned.

Example: 'OutputMode','normalized'

2 Functions in Audio Toolbox

2-410

Example: 'OutputMode','rawmidi'
Data Types: char | string

Output Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

Definitions

MIDI Device Control Numbers
MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 +
(MIDI Controller Number).

• MIDI Channel Number is the transmission channel that your device uses to send
messages. This value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI
device. This value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller
Number.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiid | midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

 midicontrols

2-411

midiid
Interactively identify MIDI control

Syntax
[controlNumber,deviceName] = midiid

Description
[controlNumber,deviceName] = midiid returns the control number and device
name of the MIDI control you move. Call the function and then move the control you want
to identify. The function detects which control you move and returns the control number
and device name that specify that control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want
to identify.

[ctl,dev] = midiid;
Move the control you wish to identify; type ^C to abort.
Waiting for control message...

ctl =
1002

2 Functions in Audio Toolbox

2-412

dev =
nanoKONTROL

Output Arguments
controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The device manufacturer assigns the
value to the control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system,
specified as a string.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

 midiid

2-413

midiread
Return most recent value of MIDI controls

Syntax
controlValues = midiread(midicontrolsObject)

Description
controlValues = midiread(midicontrolsObject) returns the most recent value
of the MIDI controls associated with the specified midicontrolsObject. To create this
object, use the midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;
controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid
[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlOne =

 1081

2 Functions in Audio Toolbox

2-414

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];
midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a
vector that corresponds to your control numbers vector, controlNumbers.

tic
while toc < 5
 controlValues = midiread(midicontrolsObject)
end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the
MIDI control you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object
cannot be determined until you move the MIDI control. Specify an initial value associated
with your MIDI control. The midiread function returns the initial value until the MIDI
control is moved.

initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);

 midiread

2-415

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by
the control on your MIDI device, and then write the frame to your audio output device. By
default, the control value returned by midiread is normalized.

while ~isDone(fileReader)
 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);
end

Close the input file and release your output device.

release(fileReader);
release(deviceWriter);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

Output Arguments
controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

2 Functions in Audio Toolbox

2-416

Most recent values of MIDI controls, returned as normalized values in the range [0,1],
or as integer values in the range [0,127]. The output values depend on the OutputMode
specified when your midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in the
range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode was specified as 'rawmidi', then midiread returns integer values in
the range [0,127], and no quantization is required.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

 midiread

2-417

midisync
Send values to MIDI controls for synchronization

Syntax
midisync(midicontrolsObject)
midisync(midicontrolsObject,controlValues)

Description
midisync(midicontrolsObject) sends the initial values of controls to your MIDI
device, as specified by your MIDI controls object. To create this object, use the
midicontrols function. If your MIDI device can receive and respond to messages, it
adjusts its controls as specified.

Note Many MIDI devices are not bidirectional. Calling midisync with a unidirectional
device has no effect. midisync cannot tell whether a value is successfully sent to a
device or even whether the device is bidirectional. If sending a value fails, no errors or
warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the
MIDI controls associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

2 Functions in Audio Toolbox

2-418

Create a MIDI controls object. Specify an initial value for your control. Call midisync to
set the specified control on your device to the initial value.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialValue);
midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to
set the specified control on your device to the initial value.

controlValues = [0,0,1];
midicontrolsObject = midicontrols(controlNumbers,controlValues);
midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the
physical controls on your device.

for i = 1:100
 controlValues = controlValues + [0.006,0.008,-0.008];
 midisync(midicontrolsObject,controlValues);
 pause(0.1)
end

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

 midisync

2-419

function trivialmidigui(controlNumber,deviceName)

 slider = uicontrol('Style','slider');
 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);
 midisync(mc);
 set(slider,'Callback',@slidercb);
 midicallback(mc, @mccb);

 function slidercb(slider,~)
 val = get(slider,'Value');
 midisync(mc, val);
 disp(val);
 end

 function mccb(mc)
 val = midiread(mc);
 set(slider,'Value',val);
 disp(val);
 end

end

Use midiid to identify a control number and device name. Call the function you created,
specifying the control number and device name as inputs.

[controlNumber,deviceName] = midiid;
trivialmidigui(controlNumber,deviceName)

The slider on the user interface is synchronized with the specified control on your device.
Move one to see the other respond.

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by
midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

2 Functions in Audio Toolbox

2-420

Values sent to MIDI device, specified as a scalar or an array the same size as
controlNumbers of the associated midicontrols object. If you do not specify
controlValues, the default value is the initialValues of the associated
midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of
values in the range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of
integer values in the range [0,127].

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback |
midicontrols | midiid | midiread | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

 midisync

2-421

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax
validateAudioPlugin classname
validateAudioPlugin options classname

Description
validateAudioPlugin classname generates and runs a “Test Bench Procedure” on
page 2-425 that exercises your audio plugin class.

validateAudioPlugin options classname specifies options to modify the default
“Test Bench Procedure” on page 2-425.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Deleting testbench.
Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

2 Functions in Audio Toolbox

2-422

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Keeping testbench.
Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m
• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Keeping testbench.

One test bench is saved to your current folder:

 validateAudioPlugin

2-423

• testbench_Echo.m

Input Arguments
options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench.
Options can be specified together or separately, and in any order.

• -nomex –– validateAudioPlugin does not generate and run a MEX version of the
test bench file. This option significantly reduces run time of the test bench procedure.

• -keeptestbench –– validateAudioPlugin saves the generated test benches to the
current folder.

classname — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the
audioPlugin class or the audioPluginSource class. The validateAudioPlugin
function exercises an instance of the specified plugin class.

You can specify the plugin class to validate by specifying its class name or file name. For
example, the following syntaxes perform equivalent operations:

• validateAudioPlugin myPlugin
• validateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a
package, you must specify the package as a file path. For example, the following syntaxes
perform equivalent operations:

• validateAudioPlugin myPluginPackage.myPlugin
• validateAudioPlugin +myPluginPackage/myPlugin.m

Limitations
The valdiateAudioPlugin function is compatible with Windows and Mac operating
systems. It is not compatible with Linux.

2 Functions in Audio Toolbox

2-424

Definitions

Test Bench Procedure
The valudateAudioPlugin function uses dynamic testing to find common audio plugin
programming mistakes not found by the static checks performed by
generateAudioPlugin. The function:

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.
3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin, step
through the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test
bench files are saved to your current folder.

See Also
Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Design an Audio Plugin”

Introduced in R2016a

 validateAudioPlugin

2-425

System objects in Audio Toolbox

3

parameterTuner
Tune object parameters while streaming

Syntax
H = parameterTuner(obj)

Description
H = parameterTuner(obj) creates a parameter tuning UI and returns a figure handle,
H.

Examples

Tune Parameters of Multiple Objects

parameterTuner enables you to graphically tune parameters of multiple objects. In this
example, you use a crossover filter to split a signal into multiple subbands and then apply
different effects to the subbands.

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3', ...
 'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a crossoverFilter with two crossovers to split the audio into three bands. Call
visualize to plot the frequency responses of the filters. Call parameterTuner to open
a UI to tune the crossover frequencies while streaming.

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate,'NumCrossovers',2);
visualize(xFilt)
parameterTuner(xFilt)

3 System objects in Audio Toolbox

3-2

Create two compressor objects to apply dynamic range compression on two of the
subbands. Call visualize to plot the static characteristic of both of the compressors.
Call parameterTuner to open UIs to tune the static characteristics.

cmpr1 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr1)
parameterTuner(cmpr1)

cmpr2 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr2)
parameterTuner(cmpr2)

 parameterTuner

3-3

3 System objects in Audio Toolbox

3-4

Create an audiopluginexample.Chorus to apply a chorus effect to one of the bands.
Call parameterTuner to open a UI to tune the chorus plugin parameters.

chorus = audiopluginexample.Chorus;
setSampleRate(chorus,fileReader.SampleRate);
parameterTuner(chorus)

 parameterTuner

3-5

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Split the audio into three bands using the crossover filter.
3 Apply dynamic range compression to the first and second bands.
4 Apply a chorus effect to the third band.
5 Sum the audio bands.
6 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();

 [b1,b2,b3] = xFilt(audioIn);

 b1 = cmpr1(b1);
 b2 = cmpr2(b2);

3 System objects in Audio Toolbox

3-6

 b3 = process(chorus,b3);

 audioOut = b1+b2+b3;

 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Hosted Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Use loadAudioPlugin to load
an equalizer plugin. If you are using a Mac, replace the .dll file extension with .vst.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

pluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
eq = loadAudioPlugin(pluginPath);
setSampleRate(eq,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(eq)

 parameterTuner

3-7

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(eq,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

3 System objects in Audio Toolbox

3-8

release(fileReader)
release(deviceWriter)

Tune MATLAB Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create an
audiopluginexample.Flanger to process the audio data and set the sample rate.

fileReader = dsp.AudioFileReader('RockGuitar-16-96-stereo-72secs.flac');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

flanger = audiopluginexample.Flanger;
setSampleRate(flanger,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the flanger while streaming.

parameterTuner(flanger)

 parameterTuner

3-9

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply flanging.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(flanger,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

3 System objects in Audio Toolbox

3-10

release(fileReader)
release(deviceWriter)

Tune Compressor Parameters

Create an dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a compressor to
process the audio data. Call visualize to plot the static characteristic of the
compressor. Create a dsp.TimeScope to visualize the original and processed audio.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while
streaming.

parameterTuner(dRC)

 parameterTuner

3-11

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the
effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

3 System objects in Audio Toolbox

3-12

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

 parameterTuner

3-13

Tune Noise Gate Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create a noiseGate to process
the audio data.

3 System objects in Audio Toolbox

3-14

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRG = noiseGate('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the noiseGate while
streaming.

parameterTuner(dRG)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range gating.
3 Write the frame of audio to your audio device for listening.

 parameterTuner

3-15

While streaming, tune parameters of the dynamic range gate and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRG(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRG)

Tune Graphic EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create a graphicEQ to process
the audio data. Call visualize to plot the frequency response of the graphic equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = graphicEQ('SampleRate',fileReader.SampleRate, ...
 'Gains',[0,10,-10,5,-5,2,-2,1,-1,0]);
visualize(equalizer)

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

3 System objects in Audio Toolbox

3-16

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

Tune Wavetable Synthesizer Parameters

Create a wavetableSynthesizer to generate a waveform. Create a dsp.TimeScope to
visualize the waveform. Create an audioDeviceWriter to write audio to your sound
card.

fs = 44.1e3;
wvSynth = wavetableSynthesizer('SampleRate',44.1e3);

scope = dsp.TimeScope(...
 'SampleRate',wvSynth.SampleRate, ...
 'TimeSpan',1, ...
 'YLimits',[-2,2], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true);

deviceWriter = audioDeviceWriter('SampleRate',wvSynth.SampleRate);

Call parameterTuner to open a UI to tune parameters of the wavetable synthesizer
while streaming.

parameterTuner(wvSynth)

 parameterTuner

3-17

In an audio stream loop:

1 Call the wavetable synthesizer without arguments to output one frame of data.
2 Visualize the data using the time scope.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the wavetable synthesizer and listen to the effect.

duration = 15;
numIterations = round(wvSynth.SampleRate*duration/wvSynth.SamplesPerFrame);
for i = 1:numIterations
 audioOut = wvSynth();
 scope(audioOut)
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

3 System objects in Audio Toolbox

3-18

As a best practice, release your objects once done.

release(deviceWriter)
release(wvSynth)
release(scope)

 parameterTuner

3-19

Input Arguments
obj — Object to tune
audioPlugin object | compressor | expander | limiter | noiseGate |
octaveFilter | crossoverFilter | multibandParametericEQ | graphicEQ |
audioOscillator | wavetableSynthesizer

3 System objects in Audio Toolbox

3-20

Object to tune, specified as an object that inherits from audioPlugin or one of the
following Audio Toolbox objects:

• compressor
• expander
• limiter
• noiseGate
• octaveFilter
• crossoverFilter
• multibandParametricEQ
• graphicEQ
• audioOscillator
• wavetableSynthesizer

Output Arguments
H — Target figure
Figure object

Target figure, returned as a Figure object.

See Also
Audio Test Bench | audioPlugin

Introduced in R2019a

 parameterTuner

3-21

gammatoneFilterBank

Gammatone filter bank

Description
gammatoneFilterBank decomposes a signal by passing it through a bank of gammatone
filters equally spaced on the ERB scale. Gammatone filter banks were designed to model
the human auditory system.

To model the human auditory system:

1 Create the gammatoneFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3 System objects in Audio Toolbox

3-22

Creation

Syntax
gammaFiltBank = gammatoneFilterBank
gammaFiltBank = gammatoneFilterBank(range)
gammaFiltBank = gammatoneFilterBank(range,numFilts)
gammaFiltBank = gammatoneFilterBank(range,numFilts,fs)
gammaFiltBank = gammatoneFilterBank(___ ,Name,Value)

Description
gammaFiltBank = gammatoneFilterBank returns a gammatone filter bank. The
object filters data independently across each input channel over time.

gammaFiltBank = gammatoneFilterBank(range) sets the Range property to
range.

gammaFiltBank = gammatoneFilterBank(range,numFilts) sets the NumFilters
property to numFilts.

gammaFiltBank = gammatoneFilterBank(range,numFilts,fs) sets the
SampleRate property to fs.

gammaFiltBank = gammatoneFilterBank(___ ,Name,Value) sets each property
Name to the specified Value. Unspecified properties have default values.
Example: gammaFiltBank =
gammatoneFilterBank([62.5,12e3],'SampleRate',24e3) creates a gammatone
filter bank, gammaFiltBank, with bandpass filters placed between 62.5 Hz and 12 kHz.
gammaFiltBank operates at a sample rate of 24 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

 gammatoneFilterBank

3-23

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FrequencyRange — Frequency range of filter bank (Hz)
[50 8000] (default) | two-element row vector of monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of
monotonically increasing values.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

NumFilters — Number of filters
32 (default) | positive integer scalar

Number of filters in the filter bank, specified as a positive integer scalar.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = gammaFiltBank(audioIn)

3 System objects in Audio Toolbox

3-24

Description
audioOut = gammaFiltBank(audioIn) applies the gammatone filter bank on the
input and returns the filtered output.

Input Arguments
audioIn — Audio input to filter bank
scalar | vector | matrix

Audio input to the filter bank, specified as a scalar, vector, or matrix. If specified as a
matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from filter bank
scalar | vector | matrix | 3-D array

Audio output from the filter bank, returned as a scalar, vector, matrix, or 3-D array. The
shape of audioOut depends on the shape of audioIn and NumFilters. If audioIn is an
M-by-N matrix, then audioOut is returned as an M-by-NumFilters-by-N array. If N is 1,
then audioOut is returned as a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gammatoneFilterBank
fvtool Visualize filter bank
freqz Compute frequency response
getCenterFrequencies Center frequencies of filters

 gammatoneFilterBank

3-25

getBandwidths Get filter bandwidths
coeffs Get filter coefficients
info Get filter information

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Apply Gammatone Filterbank

Create a default gammatone filter bank for a 16 kHz sample rate.

fs = 16e3;
gammaFiltBank = gammatoneFilterBank('SampleRate',fs)

gammaFiltBank =

 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 16000

Use fvtool to visualize the response of the filter bank.

fvtool(gammaFiltBank)

3 System objects in Audio Toolbox

3-26

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view
the spectrum of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','log',...
 'SpectralAverages',100);

for i = 1:5000
 x = randn(256,1);
 y = gammaFiltBank(x);
 sa(y);
end

 gammatoneFilterBank

3-27

Analysis and Synthesis

The gammatoneFilterBank enables good reconstruction of a signal after analyzing or
modifying its subbands.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create a default gammatoneFilterBank. The default frequency range of the filter bank
is 50 to 8000 Hz. Frequencies outside of this range are attenuated in the reconstructed
signal.

3 System objects in Audio Toolbox

3-28

gammaFiltBank = gammatoneFilterBank('SampleRate',fs)

gammaFiltBank =

 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 44100

Pass the audio signal through the gammatone filter bank. The output is 32 channels,
where the number of channels is set by the NumFilters property of the
gammatoneFilterBank.

audioOut = gammaFiltBank(audioIn);

[N,numChannels] = size(audioOut)

N =

 685056

numChannels =

 32

To reconstruct the original signal, sum the channels. Listen to the result.

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

The gammatone filter bank introduced various group delays for the output channels,
which results in poor reconstruction. To compensate for the group delay, remove the
beginning delay from the individual channels and zero-pad the ends of the channels. Use
info to get the group delays. Listen to the group delay-compensated reconstruction.

infoStruct = info(gammaFiltBank);
groupDelay = round(infoStruct.GroupDelays); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),gammaFiltBank.NumFilters)];

 gammatoneFilterBank

3-29

for i = 1:gammaFiltBank.NumFilters
 audioOut(:,i) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i);
end

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

Create Gammatone Spectrogram

Read in an audio signal and convert it to mono for easy visualization.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = mean(audio,2);

Create a gammatoneFilterBank with 64 filters that span the range 62.5 to 20,000 Hz.
Pass the audio signal through the filter bank.

gammaFiltBank = gammatoneFilterBank('SampleRate',fs, ...
 'NumFilters',64, ...
 'FrequencyRange',[62.5,20e3]);

audioOut = gammaFiltBank(audio);

Calculate the energy-per-band using 50 ms windows with 25 ms overlap. Use
dsp.AsyncBuffer to divide the signals into overlapped windows. Use dsp.SignalSink
to log the RMS value of each window for each channel.

samplesPerFrame = round(0.05*fs);
samplesOverlap = round(0.025*fs);

buff = dsp.AsyncBuffer(numel(audio));
write(buff,audioOut.^2);

sink = dsp.SignalSink;

while buff.NumUnreadSamples > 0
 currentFrame = read(buff,samplesPerFrame,samplesOverlap);
 sink(mean(currentFrame,1))
end

Convert the energy values to dB. Plot the energy-per-band over time.

3 System objects in Audio Toolbox

3-30

D = 20*log10(sink.Buffer');

timeVector = ((samplesPerFrame-samplesOverlap)/fs)*(0:size(D,2)-1);
cf = getCenterFrequencies(gammaFiltBank)./1e3;

surf(timeVector,cf,D,'EdgeColor','none')
axis([timeVector(1) timeVector(end) cf(1) cf(end)])
view([0 90])
caxis([-150,-60])
colorbar
xlabel('Time (s)')
ylabel('Frequency (kHz)')

 gammatoneFilterBank

3-31

Algorithms
A gammatone filter bank is often used as the front end of a cochlea simulation, which
transforms complex sounds into a multichannel activity pattern like that observed in the
auditory nerve.[2] The gammatoneFilterBank follows the algorithm described in [1]
and first proposed by [2]. The design of the gammatone filter bank can be described in
two parts: the filter shape (gammatone) and the frequency scale. The equivalent
rectangular bandwidth (ERB) scale defines the relative spacing and bandwidth of the
gammatone filters. The derivation of the ERB scale also provides an estimate of the
auditory filter response which closely resembles the gammatone filter.

3 System objects in Audio Toolbox

3-32

Frequency Scale
The ERB scale was determined using the notched-noise masking method. This method
involves a listening test wherein notched noise is centered on a tone. The power of the
tone is tuned, and the audible threshold (the power required for the tone to be heard) is
recorded. The experiment is repeated for different notch widths and center frequencies.

The notched-noise method assumes the audible threshold corresponds to a constant
signal-to-masker ratio at the output of the theoretical auditory filter. That is, the ratio of
the power of the fc tone and the shaded area is constant. Therefore, the relationship
between the audible threshold and 2Δf (the notch bandwidth) is linearly related to the
relationship between the noise passed through the filter and 2Δf.

 gammatoneFilterBank

3-33

The derivative of the function relating Δf to the noise passed through the filter estimates
the auditory filter shape. Because Δf has an inverse relationship with the noise power
passed through the filter, the derivative of the function must be multiplied by –1. The
resulting auditory filter shape is usually approximated as a roex filter.

The equivalent rectangular bandwidth of the auditory filter is defined as the width of a
rectangular filter required to pass the same noise power as the auditory filter.

3 System objects in Audio Toolbox

3-34

[4] defines ERB as a function of center frequency for young listeners with normal hearing
and a moderate noise level:

ERB = 24.7(0.00437fc + 1)

The ERB scale (ERBs) is an extension of the relationship between ERB and center
frequency, derived by integrating the reciprocal of the ERB function:

ERBs = 21.4log10(0.00437f + 1)

To design a gammatone filter bank, [2] suggests distributing the center frequencies of the
filters in proportion to their bandwidth. To accomplish this, gammatoneFilterBank
defines the center frequencies as linearly spaced on the ERB scale, covering the specified
frequency range with the desired number of filters. You can specify the frequency range
and desired number of filters using the FrequencyRange and NumFilters properties.

Gammatone Filter
The gammatone filter was introduced in [3]. The continuous impulse response is:

g(t) = atn− 1e−2πbtcos(2πfct + ϕ)

 gammatoneFilterBank

3-35

where

• a –– amplitude factor
• t –– time in seconds
• n –– filter order (set to four to model human hearing)
• fc–– center frequency
• b –– bandwidth, set to 1.019*erb2hz(fc).
• ϕ –– phase factor

The gammatone filter is similar to the roex filter derived from the notched-noise
experiment. gammatoneFilterBank implements the digital filter as a cascade of four
second-order sections, as described in [1].

References
[1] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdworth Auditory

Filter Bank." Apple Computer Technical Report 35, 1993.

[2] Patterson, R.d., K. Robinson, J. Holdsworth, D. Mckeown, C. Zhang, and M. Allerhand.
"Complex Sounds and Auditory Images." Auditory Physiology and Perception.
1992, pp. 429–446.

[3] Aertsen, A. M. H. J., and P. I. M. Johannesma. "Spectro-temporal Receptive Fields of
Auditory Neurons in the Grassfrog." Biological Cybernetics. Vol. 38, Issue 4, 1980,
pp. 223–234.

[4] Glasberg, Brian R., and Brian CJ Moore. "Derivation of Auditory Filter Shapes from
Notched-Noise Data." Hearing Research. Vol. 47. Issue 1-2, 1990, pp. 103 –138.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 System objects in Audio Toolbox

3-36

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
crossoverFilter | octaveFilterBank

Introduced in R2019a

 gammatoneFilterBank

3-37

coeffs
Get filter coefficients

Syntax
[B,A] = coeffs(obj)

Description
[B,A] = coeffs(obj) returns the coefficients of the filters created by obj.

Examples

Get graphicEQ Coefficients

Cascade Structure

Create a graphicEQ and then call coeffs to get its coefficients. The coefficients are
returned as second-order sections. The dimensions of B are 3-by-(M * EQOrder / 2), where
M is the number of bandpass equalizers. The dimensions of A are 2-by-(M * EQOrder / 2).
The leading unity coefficient is not returned.

fs = 44.1e3;
x = 0.1*randn(fs*5,1);
equalizer = graphicEQ('SampleRate',fs, ...
 'Gains',[-10,-10,10,10,-10,-10,10,10,-10,-10], ...
 'EQOrder',2);

[B,A] = coeffs(equalizer);

Compare using filter with coefficients B and A and the output of graphicEQ. For
simplicity, compare output channel five only.

channelToCompare = 5;
y = x;

3 System objects in Audio Toolbox

3-38

for section = 1:equalizer.EQOrder/2
 for i = 1:numel(equalizer.Gains)
 y = filter(B(:,i*section),[1;A(:,i*section)],y);
 end
end
audioOut_filter = y;

audioOut = equalizer(x);

subplot(2,1,1)
plot(abs(fft(audioOut)))
title('graphicEQ')
ylabel('Magnitude Response')

subplot(2,1,2)
plot(abs(fft(audioOut_filter)))
title('Filter function')
xlabel('Bin')
ylabel('Magnitude Response')

 coeffs

3-39

Get gammatoneFilterBank Coefficients

Create the default gammatoneFilterBank, and then call coeffs to get its coefficients.
Each gammatone filter is an eighth-order IIR filter composed of a cascade of four second-
order sections. The size of B is 4-by-3-by- NumFilters. The size of A is 4-by-2-by-
NumFilters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

gammaFiltBank = gammatoneFilterBank('SampleRate',fs);

[B,A] = coeffs(gammaFiltBank);

3 System objects in Audio Toolbox

3-40

Compare using filter with coefficients B and A and the output of gammaFiltBank. For
simplicity, compare output channel eight only.

channelToCompare = 8;
y1 = filter(B(1,:,channelToCompare),[1,A(1,:,channelToCompare)],audioIn);
y2 = filter(B(2,:,channelToCompare),[1,A(2,:,channelToCompare)],y1);
y3 = filter(B(3,:,channelToCompare),[1,A(3,:,channelToCompare)],y2);
audioOut_filter = filter(B(4,:,channelToCompare),[1,A(4,:,channelToCompare)],y3);

audioOut = gammaFiltBank(audioIn);

t = (0:(size(audioOut,1)-1))'/fs;

subplot(2,1,1)
plot(t,audioOut(:,channelToCompare))
title('Gammatone Filter Bank')
ylabel('Amplitude')

subplot(2,1,2)
plot(t,audioOut_filter)
title('Filter Function')
xlabel('Time (s)')
ylabel('Amplitude')

 coeffs

3-41

Get octaveFilterBank Coefficients

Create the default octaveFilterBank, and then call coeffs to get its coefficients. The
coefficients are returned as fourth-order sections. The dimensions of B and A are T-by-5-
by-M , where T is the number of sections and M is the number of filters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

octFiltBank = octaveFilterBank('SampleRate',fs);

[B,A] = coeffs(octFiltBank);

3 System objects in Audio Toolbox

3-42

Compare using filter with coefficients B and A and the output of octaveFilterBank.
For simplicity, compare output channel eight only.

channelToCompare = 5;
y1 = filter(B(1,:,channelToCompare),A(1,:,channelToCompare),audioIn);
audioOut_filter = y1;

audioOut = octFiltBank(audioIn);

subplot(2,1,1)
plot(audioOut(:,channelToCompare))
title('Octave Filter Bank')

subplot(2,1,2)
plot(audioOut_filter)
title('Filter function')

 coeffs

3-43

Input Arguments
obj — Object to get filter coefficients from
gammatoneFilterBank | octaveFilterBank | graphicEQ

Object to get filter coefficients from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

3 System objects in Audio Toolbox

3-44

Output Arguments
B — Numerator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

A — Denominator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

See Also
gammatoneFilterBank | graphicEQ | octaveFilterBank

Introduced in R2019a

 coeffs

3-45

freqz
Compute frequency response

Syntax
[H,f] = freqz(obj)
[H,f] = freqz(obj,ind)
[H,f] = freqz(___ ,Name,Value)
freqz(___)

Description
[H,f] = freqz(obj) returns a matrix of complex frequency responses for each filter
designed by obj.

[H,f] = freqz(obj,ind) returns the frequency response of filters with indices
corresponding to the elements in vector ind.

[H,f] = freqz(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

freqz(___) with no output arguments plots the frequency response of the filter bank.

Examples

Frequency Response of gammatoneFilterBank

Create a gammatoneFilterBank object. Call freqz to get the complex frequency
response, H, of the filter bank and a vector of frequencies, f, at which the response is
calculated. Plot the magnitude frequency response of the filter bank.

gammaFiltBank = gammatoneFilterBank;
[H,f] = freqz(gammaFiltBank);

3 System objects in Audio Toolbox

3-46

plot(f,abs(H))
xlabel('Frequency (Hz)')

To get the frequency response of a subset of filters in the filter bank, specify the second
argument as a row vector of indices between one and the number of filters in the filter
bank. Get the frequency response of the 10th filter in the filter bank and plot the
magnitude frequency response.

[H,f] = freqz(gammaFiltBank,10);

plot(f,abs(H))
xlabel('Frequency (Hz)')

 freqz

3-47

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 128-point
FFT. Plot the magnitude frequency response.

[H,f] = freqz(gammaFiltBank,'NFFT',128);

plot(f,abs(H))
xlabel('Frequency (Hz)')

3 System objects in Audio Toolbox

3-48

To visualize the magnitude frequency response only, call freqz without any output
arguments. Plot the magnitude frequency response, in dB, of filters 20, 21, and 22 using a
1024-point DFT.

freqz(gammaFiltBank,[20,21,22],'NFFT',1024)

 freqz

3-49

Frequency Response of octaveFilterBank

Create an octaveFilterBank object. Call freqz to get the complex frequency
response, H, of the filter bank and a vector of frequencies, f, at which the response is
calculated. Plot the magnitude frequency response in dB.

octFiltBank = octaveFilterBank;
[H,f] = freqz(octFiltBank);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')

3 System objects in Audio Toolbox

3-50

set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

To get the frequency response of a subset of filters in the filter bank, specify the second
argument as a row vector of indices between one and the number of filters in the filter
bank. Get the frequency response of the 5th filter in the filter bank and plot the
magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,5);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')

 freqz

3-51

set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-
point FFT. Plot the magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,'NFFT',8192);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

3 System objects in Audio Toolbox

3-52

To visualize the magnitude frequency response only, call freqz without any output
arguments. Plot the magnitude frequency response, in dB, of filters 4, 5, and 6 using a
1024-point DFT.

freqz(octFiltBank,[4,5,6],'NFFT',1024)

 freqz

3-53

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of
gammatoneFilterBank or octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:N (default) | row vector of integers with values in the range [1, N]

3 System objects in Audio Toolbox

3-54

Indices of filters to calculate frequency responses from, specified as a row vector of
integers with values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
H — Complex frequency response of each filter
matrix

Complex frequency response of each filter, returned as an M-by-N matrix. M is the
number of DFT bins, specified by NFFT. N is the number of filters, which is either
length(ind) or, if ind is not specified, the total number of filters in the filter bank.
Data Types: double

f — Frequencies at which response is computed (Hz)
column vector

Frequencies at which the response is computed in Hz, returned as a column vector.
Data Types: double

See Also
fvtool | gammatoneFilterBank | octaveFilterBank

 freqz

3-55

Introduced in R2019a

3 System objects in Audio Toolbox

3-56

fvtool
Visualize filter bank

Syntax
fvtool(obj)
fvtool(obj,ind)
fvtool(___ ,Name,Value)

Description
fvtool(obj) visualizes the filters in the filter bank using the Filter Visualization Tool
(FVTool).

fvtool(obj,ind) visualizes the filters corresponding to the elements in the vector ind.

fvtool(___ ,Name,Value) specifies options using one or more Name,Value pair
arguments.

Examples

View octaveFilterBank in FVTool

Create an octaveFilterBank object. Call fvtool to visualize the filter bank.

octFiltBank = octaveFilterBank;
fvtool(octFiltBank);

 fvtool

3-57

To visualize a subset of filters in the filter bank, specify the second argument as a row
vector of indices between one and the number of filters in the filter bank. If not specified,
fvtool visualizes 1 to N filters of the filter bank, where N is the smallest of
octFiltBank.NumFilters and 64. Visualize the ninth filter.

fvtool(octFiltBank,9);

3 System objects in Audio Toolbox

3-58

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-
point FFT.

fvtool(octFiltBank,'NFFT',8192);

 fvtool

3-59

View gammatoneFilterBank in FVTool

Create a gammatoneFilterBank object. Call fvtool to visualize the filter bank.

gammaFiltBank = gammatoneFilterBank;
fvtool(gammaFiltBank);

3 System objects in Audio Toolbox

3-60

To visualize a subset of filters in the filter bank, specify the second argument as a row
vector of indices between one and the number of filters in the filter bank. If not specified,
fvtool visualizes 1 to N filters of the filter bank, where N is the smallest of
gammaFiltBank.NumFilters and 64. Visualize the ninth filter.

fvtool(gammaFiltBank,9);

 fvtool

3-61

To specify the number of FFT points used to compute the frequency response, use the
NFFT name-value pair. Specify that the frequency response is calculated using a 8192-
point FFT.

fvtool(gammaFiltBank,'NFFT',8192);

3 System objects in Audio Toolbox

3-62

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of
gammatoneFilterBank or octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:max(N,64) (default) | row vector of integers with values in the range [1, N]

 fvtool

3-63

Indices of filters to calculate frequency responses from, specified as a row vector of
integers with values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
gammatoneFilterBank | octaveFilterBank

Introduced in R2019a

3 System objects in Audio Toolbox

3-64

getBandedgeFrequencies
Get filter bandedges

Syntax
bandEdges = getBandedgeFrequencies(obj)
[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj)

Description
bandEdges = getBandedgeFrequencies(obj) returns the bandedge frequencies of
the filters designed by obj. If there are M filters, then there are M center frequencies
and M+1 band edge frequencies.

[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj) returns the
center frequencies of the filters designed by obj.

Examples

Get Bandedge Frequencies

Create a default octaveFilterBank object.

octFiltBank = octaveFilterBank;

Call getBandedgeFrequencies to return a vector of bandedge frequencies.

bE = getBandedgeFrequencies(octFiltBank)

bE = 1×11
104 ×

 0.0022 0.0045 0.0089 0.0178 0.0355 0.0708 0.1413 0.2818 0.5623 1.1178 2.2050

 getBandedgeFrequencies

3-65

Call freqz to get the frequency response of the filter bank. Plot the magnitude frequency
response. Use the bandedge frequencies to label the frequency axis.

[H,f] = freqz(octFiltBank);
semilogx(f,abs(H))
xticks(round(bE))
xlabel('Frequency (Hz)')
ylabel('Magnitude')
grid on
h = gcf;
set(h,'Position',[h.Position(1) h.Position(2) h.Position(3)*2 h.Position(4)])

Input Arguments
obj — Object to get filter information from
octaveFilterBank object

Object to get filter information from, specified as an object of octaveFilterBank.

Output Arguments
bandEdges — Bandedges of filters (Hz)
row vector

3 System objects in Audio Toolbox

3-66

Bandedges of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

See Also
octaveFilterBank

Introduced in R2019a

 getBandedgeFrequencies

3-67

getCenterFrequencies
Center frequencies of filters

Syntax
cf = getCenterFrequencies(obj)

Description
cf = getCenterFrequencies(obj) returns the center frequencies of the filters
created by obj, in Hz.

Examples

Center Frequencies of gammatoneFilterBank

Create a gammatoneFilterBank and get the center frequencies of the filters in the filter
bank.

gammaFiltBank = gammatoneFilterBank;

cf = getCenterFrequencies(gammaFiltBank)

cf =

 1.0e+03 *

 Columns 1 through 7

 0.0500 0.0822 0.1180 0.1581 0.2027 0.2525 0.3080

 Columns 8 through 14

 0.3700 0.4390 0.5161 0.6020 0.6979 0.8048 0.9241

3 System objects in Audio Toolbox

3-68

 Columns 15 through 21

 1.0571 1.2054 1.3709 1.5555 1.7613 1.9909 2.2470

 Columns 22 through 28

 2.5327 2.8513 3.2066 3.6030 4.0451 4.5381 5.0881

 Columns 29 through 32

 5.7015 6.3857 7.1488 8.0000

Center frequencies of a gammatone filter bank are spaced evenly on the ERB scale.
Convert the center frequencies vector to the ERB scale and calculate the differences
between center frequencies.

diff(hz2erb(cf))

ans =

 Columns 1 through 7

 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116

 Columns 8 through 14

 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116

 Columns 15 through 21

 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116

 Columns 22 through 28

 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116 1.0116

 Columns 29 through 31

 1.0116 1.0116 1.0116

 getCenterFrequencies

3-69

Center Frequencies of octaveFilterBank

Create an octaveFilterBank and get the center frequencies of the filters in the filter
bank.

octFiltBank = octaveFilterBank;

cf = getCenterFrequencies(octFiltBank)

cf =

 1.0e+04 *

 Columns 1 through 7

 0.0032 0.0063 0.0126 0.0251 0.0501 0.1000 0.1995

 Columns 8 through 10

 0.3981 0.7943 1.5729

Center frequencies of an octave filter bank are spaced evenly on a logarithmic scale.
Convert the center frequencies vector to the log scale and calculate the differences
between center frequencies.

diff(log10(cf))

ans =

 Columns 1 through 7

 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

 Columns 8 through 9

 0.3000 0.2967

3 System objects in Audio Toolbox

3-70

Get Center Frequencies of Octave Filter Bank Used in splMeter

Create an octave bandwidth splMeter and get the center frequencies of the octave filter
bank. Round the center frequencies to two significant digits for display purposes.

SPL = splMeter('SampleRate',44100,'Bandwidth','1 octave');
cf = getCenterFrequencies(SPL);
round(cf,2,'significant')

ans =

 Columns 1 through 6

 32 63 130 250 500 1000

 Columns 7 through 10

 2000 4000 7900 16000

Input Arguments
obj — Object to get filter bank center frequencies from
gammatoneFilterBank | octaveFilterBank | splMeter

Object to get filter bank center frequencies from, specified as an object of
gammatoneFilterBank, octaveFilterBank, or splMeter.

Output Arguments
cf — Filter bank center frequencies (Hz)
scalar | vector

Filter bank center frequencies in Hz, returned a scalar or vector.

See Also
gammatoneFilterBank | octaveFilterBank | splMeter

 getCenterFrequencies

3-71

Introduced in R2019a

3 System objects in Audio Toolbox

3-72

getBandwidths
Get filter bandwidths

Syntax
bw = getBandwidths(obj)

Description
bw = getBandwidths(obj) returns the bandwidths of the filters created by obj, in Hz.

Examples

Get Filter Bandwidths of gammatoneFilterBank

Create a default gammatoneFilterBank. Call getBandwidths to get the bandwidths of
the filters, in Hz.

gammaFiltBank = gammatoneFilterBank;

bw = getBandwidths(gammaFiltBank)

bw =

 Columns 1 through 7

 30.6688 34.2071 38.1536 42.5554 47.4650 52.9410 59.0489

 Columns 8 through 14

 65.8614 73.4598 81.9349 91.3878 101.9313 113.6912 126.8078

 Columns 15 through 21

 getBandwidths

3-73

 141.4376 157.7554 175.9557 196.2558 218.8979 244.1523 272.3203

 Columns 22 through 28

 303.7380 338.7804 377.8657 421.4603 470.0844 524.3183 584.8091

 Columns 29 through 32

 652.2789 727.5326 811.4685 905.0880

Input Arguments
obj — Object to get filter bandwidth from
gammatoneFilterBank

Object to get filter bandwidth from, specified as an object of gammatoneFilterBank.

Output Arguments
bw — Filter bandwidths (Hz)
scalar | vector

Filter bandwidths in Hz, returned a scalar or vector.

See Also
gammatoneFilterBank

Introduced in R2019a

3 System objects in Audio Toolbox

3-74

getGroupDelays
Get group delays

Syntax
groupDelays = getGroupDelays(obj)
[groupDelays,centerFrequencies] = getGroupDelays(obj)

Description
groupDelays = getGroupDelays(obj) returns the group delay of each filter at its
center frequency.

[groupDelays,centerFrequencies] = getGroupDelays(obj) returns the center
frequency of each filter.

Examples

Get Group Delays

Create a default octaveFilterBank object. Call getGroupDelays to get the group
delay of each octave filter at its center frequency.

octFiltBank = octaveFilterBank;
[gd,cf] = getGroupDelays(octFiltBank);

Plot the group delay as a function of filter center frequency.

loglog(cf,gd,'k-',cf,gd,'bo')
grid on
xlabel('Frequency (Hz)')
ylabel('Delay (samples)')
xticks(round(cf))
yticks(round(fliplr(gd)))

 getGroupDelays

3-75

Input Arguments
obj — Object to get group delays from
octaveFilterBank

Object to get group delays from, specified as an object of octaveFilterBank.

Output Arguments
groupDelays — Group delays (samples)
row vector

3 System objects in Audio Toolbox

3-76

Group delay of each filter at its center frequency in samples, returned as a row vector.

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

See Also
octaveFilterBank

Introduced in R2019a

 getGroupDelays

3-77

octaveFilterBank
Octave and fractional-octave filter bank

Description
octaveFilterBank decomposes a signal into octave or fractional-octave subbands. An
octave-band is a frequency band where the highest frequency is twice the lowest
frequency. Octave-band and fractional octave-band filters are commonly used to mimic
how humans perceive loudness.

To apply a bank of octave-band or fractional octave-band filters:

1 Create the octaveFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3 System objects in Audio Toolbox

3-78

Creation

Syntax
octFiltBank = octaveFilterBank
octFiltBank = octaveFilterBank(bandwidth)
octFiltBank = octaveFilterBank(bandwidth,fs)
octFiltBank = octaveFilterBank(___ ,Name,Value)

Description
octFiltBank = octaveFilterBank returns an octave filter bank. The objects filters
data independently across each input channel over time.

octFiltBank = octaveFilterBank(bandwidth) sets the Bandwidth property to
bandwidth.

octFiltBank = octaveFilterBank(bandwidth,fs) sets the SampleRate property
to fs.

octFiltBank = octaveFilterBank(___ ,Name,Value) sets each property Name to
the specified Value. Unspecified properties have default values.
Example: octFiltBank = octaveFilterBank('1/2 octave','FrequencyRange',
[62.5,12000]) creates a ½ octave-band filter bank, octFiltBank, with bandpass
filters placed between 62.5 Hz and 12,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

 octaveFilterBank

3-79

Bandwidth — Filter bandwidth (octave)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6
octave' | '1/12 octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave',
'1/3 octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48
octave'.

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

FrequencyRange — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing
values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. The filter bank center frequencies are placed according
to the Bandwidth, RefererenceFrequency, and OctaveRatioBase properties. Filters
that have a center frequency outside FrequencyRange are ignored.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ReferenceFrequency — Reference frequency (Hz)
1000 (default) | positive integer scalar

Reference frequency of the filter bank in Hz, specified as a positive integer scalar. The
reference frequency defines one of the center frequencies. All other center frequencies
are set relative to the reference frequency.

Tunable: No

3 System objects in Audio Toolbox

3-80

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FilterOrder — Order of octave filters
2 (default) | even integer

Order of the octave filters, specified as an even integer. The filter order applies to each
individual filter in the filter bank.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OctaveRatioBase — Octave ratio base
10 (default) | 2

Octave ratio base, specified as 10 or 2. The octave ratio base determines the distribution
of the center frequencies of the octave filters. The ANSI S1.11 standard recommends
base 10. Base 2 is popular for music applications. Base 2 defines an octave as a factor of
2, and base 10 defines an octave as a factor of 100.3.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Syntax
audioOut = octFiltBank(audioIn)

Description
audioOut = octFiltBank(audioIn) applies the octave filter bank on the input and
returns the filtered output.

 octaveFilterBank

3-81

Input Arguments
audioIn — Audio input to octave filter bank
scalar | vector | matrix

Audio input to the octave filter bank, specified as a scalar, vector, or matrix. If specified as
a matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from octave filter bank
matrix | 3-D array

Audio output from octave filter bank, returned as a scalar, vector, matrix, or 3-D array.
The shape of audioOut depends on the shape of audioIn and the number of filters in
the filter bank. If M is the number of filters, and audioIn is an L-by-N matrix, then
audioOut is returned as an L-by-M-by-N array. If N is 1, then audioOut is a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilterBank
coeffs Get filter coefficients
freqz Compute frequency response
fvtool Visualize filter bank
getBandedgeFrequencies Get filter bandedges
getCenterFrequencies Center frequencies of filters
getGroupDelays Get group delays
info Get filter information

3 System objects in Audio Toolbox

3-82

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Apply Octave Filter Bank

Create a 1/3-octave filter bank for a signal sampled at 48 kHz. Set the frequency range to
[18 22000] Hz.

octFilBank = octaveFilterBank('1/3 octave',48000, ...
 'FrequencyRange',[18 22000]);

Use fvtool to visualize the response of the filter bank. To get a high-resolution view on
the lower frequencies, set the scale of the x-axis to log and NFFT to 2^16. Add a legend
indicating the filter bank center frequencies.

fvtool(octFilBank,'NFFT',2^16);
set(gca,'XScale','log')
axis([.01 24 -20 1])

fc = getCenterFrequencies(octFilBank);
fcc = cell(size(fc));
for ii = find(fc<1000)
 fcc{ii} = sprintf('%.0f',round(fc(ii),2,'significant'));
end
for ii = find(fc>=1000)
 fcc{ii} = sprintf('%.1fk',fc(ii)/1000);
end
legend(fcc,'Location','eastoutside')

 octaveFilterBank

3-83

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view
the spectrum of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','log',...
 'SpectralAverages',100);

for index = 1:500
 x = randn(256,1);
 y = octFilBank(x);
 sa(y);
end

3 System objects in Audio Toolbox

3-84

Analysis and Synthesis

The octaveFilterBank enables good reconstruction of a signal after analyzing or
modifying its subbands.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
sound(audioIn,fs)

Create a default octaveFilterBank. The default frequency range of the filter bank is 22
to 22,050 Hz. Frequencies outside of this range are attenuated in the reconstructed
signal.

 octaveFilterBank

3-85

octFiltBank = octaveFilterBank('SampleRate',fs);

Pass the audio signal through the octave filter bank. The number of outputs depends on
the FrequencyRange, ReferenceFrequency, OctaveRatioBase, and Bandwidth
properties of the octave filter bank. Each channel of the input is passed through a filter
bank independently and is returned as a separate page in the output.

audioOut = octFiltBank(audioIn);

[N,numFilters,numChannels] = size(audioOut)

N =

 1265935

numFilters =

 10

numChannels =

 2

The octave filter bank introduces various group delays. To compensate for the group
delay, remove the beginning delay from the individual filter outputs and zero-pad the ends
of the signals so that they are all the same size. Use getGroupDelays to get the group
delays. Listen to the group delay-compensated reconstruction.

groupDelay = round(getGroupDelays(octFiltBank)); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),numFilters,numChannels)];

for i = 1:numFilters
 audioOut(:,i,:) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i,:);
end

To reconstruct the original signal, sum the outputs of the filter banks for each channel.
Use squeeze to move the second channel from the third dimension to the second in the
reconstructed signal.

3 System objects in Audio Toolbox

3-86

reconstructedSignal = squeeze(sum(audioOut,2));
sound(reconstructedSignal,fs)

Algorithms
The octaveFilterBank is implemented as a parallel structure of octave filters.
Individual octave filters are designed as described by octaveFilter. By default, the
octave filter bank center frequencies are placed as specified by the ANSI S1.11-2004
standard. You can modify the filter placements using the Bandwidth, FrequencyRange,
ReferenceFrequency, and OctaveRatioBase properties.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
gammatoneFilterBank | graphicEQ | octaveFilter | splMeter

Topics
“Octave-Band and Fractional Octave-Band Filters”

 octaveFilterBank

3-87

Introduced in R2019a

3 System objects in Audio Toolbox

3-88

splMeter

Measure sound pressure level of audio signal

Description
The splMeter System object computes sound pressure level measurements. The object
returns measurements for:

• frequency-weighted sound levels
• fast or slow time-weighted sound levels
• equivalent-continuous sound levels
• peak sound levels
• maximum sound levels

To implement SPL metering:

1 Create the splMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 splMeter

3-89

Creation

Syntax
SPL = splMeter
SPL = splMeter(Name,Value)

Description
SPL = splMeter creates a System object, SPL, that performs SPL metering.

SPL = splMeter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: SPL = splMeter('FrequencyWeighting','C-
weighting','SampleRate',12000) creates a System object, SPL, that performs C-
weighting and operates at 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Bandwidth — Width of analysis bands
'Full band' (default) | '1 octave' | '2/3 octave' | '1/3 octave'

Width of analysis bands, specified as 'Full band', '1 octave', '2/3 octave', or
'1/3 octave'. If Bandwidth is specified as 'Full band', the SPL meter returns one
set of measurements for the whole frequency band. If Bandwidth is specified as '1
octave', '2/3 octave', or '1/3 octave', the SPL meter returns one set of
measurements per octave or fractional-octave band.

Tunable: No

3 System objects in Audio Toolbox

3-90

Data Types: char | string

OctaveFilterOrder — Order of octave filter
2 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No
Dependencies

To enable this property, set Bandwidth to '1 octave', '2/3 octave', or '1/3
octave'.
Data Types: single | double

FrequencyWeighting — Frequency weighting applied to input
'A-weighting' (default) | 'C-weighting' | 'Z-weighting' (no weighting)

Frequency weighting applied to input, specified as 'A-weighting', 'C-weighting', or
'Z-weighting', where Z-weighting corresponds to no weighting. The frequency
weighting is designed and implemented using the weightingFilter System object.

Tunable: No
Data Types: char | string

TimeWeighting — Time weighting (s)
'Fast' (default) | 'Slow'

Time weighting, in seconds, for calculation of time-weighted sound level and maximum
time-weighted sound level, specified as 'Fast' or 'Slow'. The TimeWeighting
property is used to specify the coefficient of a lowpass filter.

• 'Fast' – 1/8
• 'Slow' – 1

Tunable: Yes
Data Types: char | string

PressureReference — Reference pressure for dB calculations (Pa)
2e-5 (default) | positive scalar

Reference pressure for dB calculations in Pa, specified as a positive scalar.

 splMeter

3-91

Tunable: Yes
Data Types: single | double

TimeInterval — Time interval for reporting level measurements (s)
1 (default) | positive scalar

Time interval, in seconds, to report equivalent-continuous, peak, and maximum time-
weighted sound levels, specified as a positive scalar integer.

Tunable: No
Data Types: single | double

CalibrationFactor — Scalar calibration factor multiplied by input
1 (default) | positive finite scalar

Scalar calibration factor multiplied by input.

To set the calibration factor using a reference tone, use calibrate.

Tunable: No
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

Usage

Syntax
[Lt,Leq,Lpeak,Lmax] = SPL(audioIn)

3 System objects in Audio Toolbox

3-92

Description
[Lt,Leq,Lpeak,Lmax] = SPL(audioIn) returns measurement values for the time-
weighted (Lt) sound level of the current input frame, audioIn. The object also returns
the equivalent-continuous (Leq), peak (Lpeak), and maximum time-weighted (Lmax)
sound levels of the input to your SPL meter.

Input Arguments
audioIn — Audio input to SPL meter
column vector | matrix

Audio input to the SPL meter, specified as a column vector or matrix. The columns of the
matrix are treated as independent audio channels.
Data Types: single | double

Output Arguments
Lt — Time-weighted sound level (dB)
column vector | matrix | 3-D array

Time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the
same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Leq — Equivalent-continuous sound level (dB)
column vector | matrix | 3-D array

 splMeter

3-93

Equivalent-continuous sound level in dB, returned as a column vector, matrix, or 3-D
array the same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Lpeak — Peak sound level (dB)
column vector | matrix | 3-D array

Peak sound level in dB, returned as a column vector, matrix, or 3-D array the same type as
audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Lmax — Maximum time-weighted sound level (dB)
column vector | matrix | 3-D array

Maximum time-weighted sound level in dB, returned as a column vector, matrix, or 3-D
array the same type as audioIn.

3 System objects in Audio Toolbox

3-94

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors
or matrices the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are
returned as L-by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to splMeter
calibrate Calibrate meter using calibration tone with known level
getCenterFrequencies Center frequencies of filters

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

 splMeter

3-95

Measure SPL of Audio Signal

Use the splMeter System object™ to measure the A-weighted sound pressure level of a
streaming audio signal. Specify a two second time-interval for reporting and a fast time-
weighting. Visualize the SPL measurements using the dsp.TimeScope System object.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create
an audioDeviceWriter object to listen to the audio signal. Create a dsp.TimeScope
object to visualize SPL measurements. Create an splMeter to measure the sound
pressure level of the audio file. Use the default calibration factor of 1.

source = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

scope = dsp.TimeScope('SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',3,'ShowGrid',true, ...
 'YLimits',[20 110],'AxesScaling','Auto', ...
 'ShowLegend',true,'BufferLength',4*3*fs, ...
 'ChannelNames', ...
 {'Lt_AF','Leq_A','Lpeak_A','Lmax_AF'}, ...
 'Name','Sound Pressure Level Meter');

SPL = splMeter('TimeWeighting','Fast', ...
 'FrequencyWeighting','A-weighting', ...
 'SampleRate',fs, ...
 'TimeInterval',2);

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the time-weighted, equivalent-continuous, peak, and

maximum time-weighted sound levels in dB.
4 Display the sound levels using the scope.

As a best practice, release your objects once complete.

while ~isDone(source)
 x = source();
 player(x);

3 System objects in Audio Toolbox

3-96

 [Lt,Leq,Lpeak,Lmax] = SPL(x);
 scope([Lt,Leq,Lpeak,Lmax])
end

release(source)
release(player)
release(SPL)
release(scope)

 splMeter

3-97

Octave SPL Metering

The splMeter enables you to monitor sound pressure level for octave and fractional-
octave bands. In this example, you monitor the equivalent-continuous sound pressure
level of 1/3-octave bands.

3 System objects in Audio Toolbox

3-98

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create
an audioDeviceWriter object so you can listen to the audio signal. Create an
splMeter to measure the octave sound pressure level of the audio file. Use the default
calibration factor of 1. Create a dsp.ArrayPlot object to visualize the equivalent-
continuous SPL for each octave band.

source = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

SPL = splMeter(...
 'Bandwidth','1/3 octave', ...
 'SampleRate',fs);
centerFrequencies = getCenterFrequencies(SPL);

scope = dsp.ArrayPlot(...
 'XDataMode','Custom', ...
 'CustomXData',centerFrequencies, ...
 'XLabel','Octave Band Center Frequencies (Hz)', ...
 'YLabel','Equivalent-Continuous Sound Level (dB)', ...
 'YLimits',[20 90], ...
 'ShowGrid',true, ...
 'Name','Sound Pressure Level Meter');

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the equivalent-continuous sound pressure level in dB.
4 Display the sound levels using the scope. Update the scope only when the equivalent-

continuous sound pressure level has changed.

As a best practice, release your objects once complete.

LeqPrevious = zeros(size(centerFrequencies));
while ~isDone(source)
 x = source();
 player(x);
 [~,Leq] = SPL(x);

 for i = 1:size(Leq,1)
 if LeqPrevious ~= Leq(i,:)

 splMeter

3-99

 scope(Leq(i,:)')
 LeqPrevious = Leq(i,:);
 end
 end

end

release(source)
release(player)
release(SPL)
release(scope)

3 System objects in Audio Toolbox

3-100

Algorithms
Sound pressure level calculations follow the algorithms described in [1]. You can specify
property values to conform to standards [2] and [3].

Calibration
To account for environmental and input device effects in SPL measurements, the audio
input is multiplied by a calibration factor:

x = audioIn × CalibrationFactor

 splMeter

3-101

The CalibrationFactor property can be set directly, or by using the calibrate
function, which compares a known level with acquired data. The known level is
determined using a physical calibrator.

Frequency Weighting
A-, C-, or Z-frequency weighting is applied. The frequency weighting is implemented
using the weightingFilter System object.

Analysis Bands
If you specify the Bandwidth property as '1 octave', '2/3 octave' or '1/3
octave', then the SPL calculations are applied to each octave or fractional-octave band.
These analysis bands are determined after frequency weighting.

Time-Weighted Sound Level
Time-weighted sound level is defined as the ratio of the time-weighted root mean squared
sound pressure to the reference sound pressure, converted to dB. That is,

Lt = 10log10

1 τ ∫tst
y(ξ)2e− t − ξ /τdξ

po
2

= 10log10
h(y2)

po
2

h(y2) can be interpreted as the convolution of y2 with a filter with impulse response
1 τ e−t τ. y is the output of the frequency-weighting filter. The impulse response

corresponds to a lowpass filter of the form H s =
1 τ

s + 1 τ
. Using impulse invariance, the

discrete filter can be interpreted as,

H z =
1 τ × f s

1 − e−1 τ × f s z−1
.

• τ is specified by the time-weighting coefficient as 0.125 (if TimeWeighting is set to
'Fast') or 1 (if TimeWeighting is set to'Slow').

3 System objects in Audio Toolbox

3-102

• fs is the sample rate specified by the SampleRate property.

Equivalent-Continuous Sound Level
Equivalent-continuous sound level is also called time-average sound level. It is defined as
the ratio of root mean squared sound pressure to the reference sound pressure, converted
to dB. That is,

Leq = 10log10

1 T ∫t1
t2

y2dt

po
2

= 20log10 rms y /po

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Peak Sound Level
Peak sound level is defined as the ratio of peak sound pressure to the reference sound
pressure, converted to dB. That is,

Lpeak = 20log10 max y /po

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Max Time-Weighted Sound Level
Maximum time-weighted sound level is defined as the greatest time-weighted sound level
within a stated time interval.

 splMeter

3-103

References
[1] Harris, Cyril M. Handbook of Acoustical Measurements and Noise Control. 3rd ed.

American Institute of Physics, 1998.

[2] International Electrotechnical Commission. Electroacoustics - Sound level meters -
Part 1: Specifications. IEC 61672-1:2013.

[3] American National Standards Institute. ANSI S1.4: Specification for Sound Level
Meters. 1983.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
loudnessMeter

Blocks
Loudness Meter

Functions
integratedLoudness

Topics
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2018a

3 System objects in Audio Toolbox

3-104

calibrate
Calibrate meter using calibration tone with known level

Syntax
calibrate(SPL,calibrationTone,trueLevel)

Description
calibrate(SPL,calibrationTone,trueLevel) sets the CalibrationFactor
property based on the computed sound pressure level of calibrationTone and the
known trueLevel. trueLevel refers to the physical calibrator level used to generate
the calibrationTone.

Input Arguments
SPL — splMeter System object
object

splMeter System object to be calibrated.

calibrationTone — Audio signal used to calibrate SPL meter
column vector

Audio signal used to calibrate the SPL meter, specified as a column vector.
Data Types: single | double

trueLevel — True level of calibration tone (dB)
scalar

True level of calibration tone in dB, specified as a scalar. The true level is the known level
of output by a physical calibrator.
Data Types: single | double

 calibrate

3-105

Algorithms
To set the CalibrationFactor property on an splMeter object, the calibrate
function uses a calibration tone, the known level output by the calibrator to produce the
calibration tone, and the PressureReference property.

The CalibrationFactor property is set according to the equation:

CalibrationFactor = 10 trueLevel−k /20

rms(calibrationTone)

where k is 1 pascal relative to the reference pressure calculated in dB:

k = 20log10
1

PressureReference .

See Also
System Objects
splMeter

3 System objects in Audio Toolbox

3-106

Introduced in R2018a

 calibrate

3-107

voiceActivityDetector
Detect presence of speech in audio signal

Description
The voiceActivityDetector System object detects the presence of speech in an audio
segment. You can also use the voiceActivityDetector System object to output an
estimate of the noise variance per frequency bin.

To detect the presence of speech:

1 Create the voiceActivityDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
VAD = voiceActivityDetector

3 System objects in Audio Toolbox

3-108

VAD = voiceActivityDetector(Name,Value)

Description
VAD = voiceActivityDetector creates a System object, VAD, that detects the
presence of speech independently across each input channel.

VAD = voiceActivityDetector(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: VAD = voiceActivityDetector('InputDomain','Frequency') creates
a System object, VAD, that accepts frequency-domain input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as 'Time' or 'Frequency'.

Tunable: No
Data Types: char | string

FFTLength — FFT length
[] (default) | positive scalar

FFT length, specified as a positive scalar. The default is [], which means that the
FFTLength is equal to the number of rows of the input.

Tunable: No

 voiceActivityDetector

3-109

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double

Window — Window function for FFT
'Hann' (default) | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser' |
'Rectangular'

Time-domain window function applied before calculating the discrete-time Fourier
transform (DTFT), specified as 'Hann', 'Rectangular', 'Flat Top', 'Hamming',
'Chebyshev', or 'Kaiser'.

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: char | string

SidelobeAttenuation — Sidelobe attenuation of window (dB)
60 (default) | real positive scalar

Sidelobe attenuation of the window in dB, specified as a real positive scalar.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time' and Window to 'Chebyshev' or
'Kaiser'.
Data Types: single | double

3 System objects in Audio Toolbox

3-110

SilenceToSpeechProbability — Probability of transition from a frame of
silence to a frame of speech
0.2 (default) | scalar in the range [0,1]

Probability of transition from a frame of silence to a frame of speech, specified as a scalar
in the range [0,1].

Tunable: Yes
Data Types: single | double

SpeechToSilenceProbability — Probability of transition from a frame of
speech to a frame of silence
0.1 (default) | scalar in the range [0,1]

Probability of transition from a frame of speech to a frame of silence, specified as a scalar
in the range [0,1].

Tunable: Yes
Data Types: single | double

Usage

Syntax
[probability,noiseEstimate] = VAD(audioIn)

Description
[probability,noiseEstimate] = VAD(audioIn) applies a voice activity detector
on the input, audioIn, and returns the probability that speech is present. It also returns
the estimated noise variance per frequency bin.

Input Arguments
audioIn — Audio input to voice activity detector
scalar | vector | matrix

 voiceActivityDetector

3-111

Audio input to the voice activity detector, specified as a scalar, vector, or matrix. If
audioIn is a matrix, the columns are treated as independent audio channels.

The size of the audio input is locked after the first call to the voiceActivityDetector
object. To change the size of audioIn, call release on the object.

If InputDomain is set to 'Time', audioIn must be real-valued. If InputDomain is set to
'Frequency', audioIn can be real-valued or complex-valued.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
probability — Probability that speech is present
scalar | row vector

Probability that speech is present, returned as a scalar or row vector with the same
number of columns as audioIn.
Data Types: single | double

noiseEstimate — Estimate of noise variance per frequency bin
column vector | matrix

Estimate of the noise variance per frequency bin, returned as a column vector or matrix
with the same number of columns as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use

3 System objects in Audio Toolbox

3-112

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object
step Run System object algorithm

Examples

Detect Voice Activity

Use the default voiceActivityDetector System object? to detect the presence of
speech in a streaming audio signal.

Create an audio file reader to stream an audio file for processing. Define parameters to
chunk the audio signal into 10 ms non-overlapping frames.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;
fileReader.SamplesPerFrame = ceil(10e-3*fs);

Create a default voiceActivityDetector System object to detect the presence of
speech in the audio file.

VAD = voiceActivityDetector;

Create a scope to plot the audio signal and corresponding probability of speech presence
as detected by the voice activity detector. Create an audio device writer to play the audio
through your sound card.

scope = dsp.TimeScope(...
 'NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5 1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});
deviceWriter = audioDeviceWriter('SampleRate',fs);

In an audio stream loop:

 voiceActivityDetector

3-113

1 Read from the audio file.
2 Calculate the probability of speech presence.
3 Visualize the audio signal and speech presence probability.
4 Play the audio signal through your sound card.

while ~isDone(fileReader)
 audioIn = fileReader();
 probability = VAD(audioIn);
 scope(audioIn,probability*ones(fileReader.SamplesPerFrame,1))
 deviceWriter(audioIn);
end

3 System objects in Audio Toolbox

3-114

Detect Voice Activity Using Overlapped Frames

Use a voice activity detector to detect the presence of speech in an audio signal. Plot the
probability of speech presence along with the audio samples.

Create a dsp.AudioFileReader System object? to read a speech file.

 voiceActivityDetector

3-115

afr = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = afr.SampleRate;

Chunk the audio into 20 ms frames with 75% overlap between successive frames. Convert
the frame time in seconds to samples. Determine the hop size (the increment of new
samples). In the audio file reader, set the samples per frame to the hop size. Create a
default dsp.AsyncBuffer object to manage overlapping between audio frames.

frameSize = ceil(20e-3*fs);
overlapSize = ceil(0.75*frameSize);
hopSize = frameSize - overlapSize;
afr.SamplesPerFrame = hopSize;

inputBuffer = dsp.AsyncBuffer('Capacity',frameSize);

Create a voiceActivityDetector System object. Specify an FFT length of 1024.

VAD = voiceActivityDetector('FFTLength',1024);

Create a scope to plot the audio signal and corresponding probability of speech presence
as detected by the voice activity detector. Create an audioDeviceWriter System object
to play audio through your sound card.

scope = dsp.TimeScope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});

player = audioDeviceWriter('SampleRate',fs);

Initialize a vector to hold the probability values.

pHold = ones(hopSize,1);

In an audio stream loop:

1 Read a hop worth of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under

analysis.

3 System objects in Audio Toolbox

3-116

4 Set the last element of the probability vector to the new probability decision.
Visualize the audio and speech presence probability using the time scope.

5 Play the audio through your sound card.
6 Set the probability vector to the most recent result for plotting in the next loop.

while ~isDone(afr)
 x = afr();
 n = write(inputBuffer,x);

 overlappedInput = read(inputBuffer,frameSize,overlapSize);

 p = VAD(overlappedInput);

 pHold(end) = p;
 scope(x,pHold)

 player(x);

 pHold(:) = p;
end

 voiceActivityDetector

3-117

Release the player once the audio finishes playing.

release(player)

3 System objects in Audio Toolbox

3-118

Frequency-Domain Voice Activity Detection and Cepstral Feature Extraction

Many feature extraction techniques operate on the frequency domain. Converting an
audio signal to the frequency domain only once is efficient. In this example, you convert a
streaming audio signal to the frequency domain and feed that signal into a voice activity
detector. If speech is present, mel-frequency cepstral coefficients (MFCC) features are
extracted from the frequency-domain signal using the cepstralFeatureExtractor
System object™.

Create a dsp.AudioFileReader System object to read from an audio file.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;

Process the audio in 30 ms frames with a 10 ms hop. Create a default dsp.AsyncBuffer
object to manage overlap between audio frames.

samplesPerFrame = ceil(0.03*fs);
samplesPerHop = ceil(0.01*fs);
samplesPerOverlap = samplesPerFrame - samplesPerHop;

fileReader.SamplesPerFrame = samplesPerHop;
buffer = dsp.AsyncBuffer;

Create a voiceActivityDetector System object and a cepstralFeatureExtractor
System object. Specify that they operate in the frequency domain. Create a
dsp.SignalSink to log the extracted cepstral features.

VAD = voiceActivityDetector('InputDomain','Frequency');
cepFeatures = cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy','Replace');
sink = dsp.SignalSink;

In an audio stream loop:

1 Read one hop's of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under

analysis.
4 If the frame under analysis has a probability of speech greater than 0.75, extract

cepstral features and log the features using the signal sink. If the frame under
analysis has a probability of speech less than 0.75, write a vector of NaNs to the sink.

 voiceActivityDetector

3-119

threshold = 0.75;
nanVector = nan(1,13);
while ~isDone(fileReader)
 audioIn = fileReader();
 write(buffer,audioIn);

 overlappedAudio = read(buffer,samplesPerFrame,samplesPerOverlap);
 X = fft(overlappedAudio,2048);

 probabilityOfSpeech = VAD(X);
 if probabilityOfSpeech > threshold
 xFeatures = cepFeatures(X);
 sink(xFeatures')
 else
 sink(nanVector)
 end
end

Visualize the cepstral coefficients over time.

timeVector = linspace(0,15,size(sink.Buffer,1));
plot(timeVector,sink.Buffer)
xlabel('Time (s)')
ylabel('MFCC Amplitude')
legend('Log-Energy','c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12')

3 System objects in Audio Toolbox

3-120

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using
the pitch function. Then use the voiceActivityDetector to remove irrelevant pitch
information that does not correspond to the speaker.

Read in the audio file and associated sample rate.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

 voiceActivityDetector

3-121

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop).
Specify that the pitch function searches for the fundamental frequency over the range
50-150 Hz and postprocesses the results with a median filter. Plot the results.

windowLength = round(0.05*fs);
overlapLength = round(0.04*fs);
hopLength = windowLength - overlapLength;

[f0,loc] = pitch(audio,fs, ...
 'WindowLength',windowLength, ...
 'OverlapLength',overlapLength, ...
 'Range',[50 150], ...
 'MedianFilterLength',3);

plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

3 System objects in Audio Toolbox

3-122

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped
frames. Also create a voiceActivityDetector System object™ to determine if the
frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the
probability that the frame contains speech. To mimic the decision spacing in time of the
pitch function, the first frame read from the buffer has no overlap.

n = 1;
probabilityVector = zeros(numel(loc),1);

 voiceActivityDetector

3-123

while buffer.NumUnreadSamples >= hopLength
 if n==1
 x = read(buffer,windowLength);
 else
 x = read(buffer,windowLength,overlapLength);
 end
 probabilityVector(n) = VAD(x);
 n = n+1;
end

Use the probability vector determined by the voiceActivityDetector to plot a pitch
contour for the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;
f0(~validIdx) = nan;
plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

3 System objects in Audio Toolbox

3-124

Algorithms
The voiceActivityDetector implements the algorithm described in [1].

 voiceActivityDetector

3-125

If InputDomain is specified as 'Time', the input signal is windowed and then converted
to the frequency domain according to the Window, SidelobeAttenuation, and
FFTLength properties. If InputDomain is specified as frequency, the input is assumed to
be a windowed discrete time Fourier transform (DTFT) of an audio signal. The signal is
then converted to the power domain. Noise variance is estimated according to [2]. The
posterior and prior SNR are estimated according to the Minimum Mean-Square Error
(MMSE) formula described in [3]. A log likelihood ratio test and Hidden Markov Model
(HMM)-based hang-over scheme determine the probability that the current frame
contains speech, according to [1].

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice

Activity Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and
Minimum Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9,
No. 5, 2001, pp. 504–512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square
Error Short-Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics,
Speech, and Signal Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 System objects in Audio Toolbox

3-126

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
cepstralFeatureExtractor

Blocks
Voice Activity Detector

Functions
mfcc | pitch

Introduced in R2018a

 voiceActivityDetector

3-127

cepstralFeatureExtractor
Extract cepstral features from audio segment

Description
The cepstralFeatureExtractor System object extracts cepstral features from an
audio segment. Cepstral features are commonly used to characterize speech and music
signals.

To extract cepstral features:

1 Create the cepstralFeatureExtractor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
cepFeatures = cepstralFeatureExtractor
cepFeatures = cepstralFeatureExtractor(Name,Value)

Description
cepFeatures = cepstralFeatureExtractor creates a System object,
cepFeatures, that calculates cepstral features independently across each input channel.
Columns of the input are treated as individual channels.

cepFeatures = cepstralFeatureExtractor(Name,Value) sets each property
Name to the specified Value. Unspecified properties have default values.
Example: cepFeatures =
cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'

3 System objects in Audio Toolbox

3-128

LogEnergy','Replace') accepts a signal in the frequency domain, sampled at fs Hz.
The first element of the coefficients vector is replaced by the log energy value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FilterBank — Type of filter bank
'Mel' (default) | 'Gammatone'

Type of filter bank, specified as either 'Mel' or 'Gammatone'. When FilterBank is set
to Mel, the object computes the mel frequency cepstral coefficients (MFCC). When
FilterBank is set to Gammatone, the object computes the gammatone cepstral
coefficients (GTCC).
Data Types: char | string

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as either 'Time' or 'Frequency'.
Data Types: char | string

NumCoeffs — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the
number of valid passbands. The number of valid passbands depends on the type of filter
bank:

• Mel –– The number of valid passbands is defined as sum(BandEdges <=
floor(SampleRate/2))-2.

• Gammatone –– The number of valid passbands is defined as
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

 cepstralFeatureExtractor

3-129

Data Types: single | double

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is
equal to the number of rows in the input signal.

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LogEnergy — Specify how the log energy is shown
'Append' (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

• 'Append' –– The object prepends the log energy to the coefficients vector. The length
of the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: char | string

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.

Tunable: Yes
Data Types: single | double

Advanced properties

BandEdges — Band edges of mel filter bank (Hz)
row vector

3 System objects in Audio Toolbox

3-130

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing
row vector in the range [0, ∞). The maximum bandedge frequency can be any finite
number. The number of bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically after.
The default band edges are set as recommended by [1].

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: single | double

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the filter bank in Hz, specified as a positive, monotonically increasing
two-element row vector. The maximum frequency can be any finite number. The center
frequencies of the filter bank are equally spaced between
hz2erb(FrequencyRange(1)) and hz2erb(FrequencyRange(2)) on the ERB scale.

Dependencies

To enable this property, set FilterBank to Gammatone.
Data Types: single | double

FilterBankDesignDomain — Domain for mel filter bank design
'Hz' (default) | 'Bin'

Domain for filter bank design, specified as either 'Hz' or 'Bin'. The filter bank is
designed as overlapped triangles with band edges specified by the BandEdges property.

The BandEdges property is specified in Hz. When you set the design domain to:

• 'Hz' –– Filter bank triangles are drawn in Hz and are mapped onto bins.

Here is an example that plots the filter bank in bins when the
FilterBankDesignDomain is set to 'Hz':

[audioFile, fs] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');
duration = round(0.02*fs); % 20 ms audio segment
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

 cepstralFeatureExtractor

3-131

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 22500

 Advanced Properties
 BandEdges: [1×42 double]
 FilterBankDesignDomain: 'Hz'
 FilterBankNormalization: 'Bandwidth'

Pass the audio segment as an input to the cepstral feature extractor algorithm to lock
the object.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

Using the getFilters function, get the filter bank. Plot the filter bank.

[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

3 System objects in Audio Toolbox

3-132

For details, see [1].
• 'Bin' –– The bandedge frequencies in 'Hz' are converted to bins. The filter bank

triangles are drawn symmetrically in bins.

Change the FilterBankDesignDomain property to 'Bin':

release(cepFeatures);
cepFeatures.FilterBankDesignDomain = 'Bin';

 cepstralFeatureExtractor

3-133

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);
[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

For details, see [2].

3 System objects in Audio Toolbox

3-134

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: char | string

FilterBankNormalization — Normalize filter bank
'Bandwidth' (default) | 'Area' | 'None'

Normalization technique used on the weights of the filter bank, specified as:

• 'Bandwidth' –– The weights of each bandpass filter are normalized by the
corresponding bandwidth of the filter.

• 'Area' –– The weights of each bandpass filter are normalized by the corresponding
area of the bandpass filter.

• 'None' –– The weights of the filter are not normalized.

Data Types: char | string

Usage

Syntax
[coeffs,delta,deltaDelta] = cepFeatures(audioIn)

Description
[coeffs,delta,deltaDelta] = cepFeatures(audioIn) returns the cepstral
coefficients, the log energy, the delta, and the delta-delta.

The log energy value prepends the coefficient vector or replaces the first element of the
coefficients vector based on whether you set the LogEnergy property to 'Append' or
'Replace'. For details, see “coeffs” on page 3-0 .

Input Arguments
audioIn — Audio input to cepstral feature extractor
column vector | matrix

 cepstralFeatureExtractor

3-135

Audio input to the cepstral feature extractor, specified as a column vector or a matrix. If
specified as a matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output Arguments
coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is
an N-by-M matrix, N is determined by the values you specify in NumCoeffs and
LogEnergy properties. M equals the number of input audio channels.

When the LogEnergy property is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs. This is the default setting of the
LogEnergy property.

• 'Replace' –– The object replaces the first coefficient with the log energy of the
signal. The length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a vector or a
matrix. The delta array is of the same size and data type as the coeffs array.

In this example, cepFeatures is the cepstral feature extractor that accepts audio input
signal sampled at 12 kHz. Stream in three segments of audio signal on three consecutive
calls to the object algorithm. Return the cepstral coefficients of the filter bank and the
corresponding delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1] = cepFeatures(audioIn);
[coeff2,delta2] = cepFeatures(audioIn);
[coeff3,delta3] = cepFeatures(audioIn);

delta2 is computed as coeff2-coeff1, while delta3 is computed as coeff3-coeff2.
The initial array, delta1, is an array of zeros.

3 System objects in Audio Toolbox

3-136

Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a vector or a
matrix. The deltaDelta array is the same size and data type as the coeffs and delta
arrays.

In this example, consecutive calls to the cepstral feature extractor algorithm return the
deltaDelta values in addition to the coefficients and the delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1,deltaDelta1] = cepFeatures(audioIn);
[coeff2,delta2,deltaDelta2] = cepFeatures(audioIn);
[coeff3,delta3,deltaDelta3] = cepFeatures(audioIn);

deltaDelta2 is computed as delta2-delta1, while deltaDelta3 is computed as
delta3-delta2. The initial array, deltaDelta1, is an array of zeros.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to cepstralFeatureExtractor
getFilters Get auditory filter bank

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

 cepstralFeatureExtractor

3-137

Examples

Get MFCC Data for Speech Segment

Extract the mel frequency cepstral coefficients and the log energy values of segments in a
speech file. Return delta, the difference between current and the previous cepstral
coefficients, and deltaDelta, the difference between the current and the previous
delta values. The log energy value the object computes can prepend the coefficients
vector or replace the first element of the coefficients vector. This is done based on
whether you set the LogEnergy property of the cepstralFeatureExtractor object to
'Replace' or 'Append'.

Read an audio signal from 'SpeechDFT-16-8-mono-5secs.wav' file. Extract a 40 ms
segment from the audio data. Create a cepstralFeatureExtractor object. The
cepstral coefficients computed by the default object are the mel frequency coefficients. In
addition, the object computes the log energy, delta, and delta-delta values of the audio
segment.

[audioFile, fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 8000

 Show all properties

The LogEnergy property is set to 'Append'. The first element in the coefficients vector
is the log energy value and the remaining elements are the 13 cepstral coefficients
computed by the object. The number of cepstral coefficients is determined by the value
you specify in the NumCoeffs property.

3 System objects in Audio Toolbox

3-138

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment)

coeffs = 14×1

 3.8281
 -19.4827
 11.7649
 -6.2989
 5.8894
 -0.3366
 0.9583
 0.8768
 -2.0384
 2.3678
 ⋮

delta = 14×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

deltaDelta = 14×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 cepstralFeatureExtractor

3-139

 ⋮

The initial values for the delta and deltaDelta arrays are always zero. Consider
another 40 ms audio segment in the file and extract the cepstral features from this
segment.

audioSegmentTwo = audioFile(5820:5820+duration-1);
[coeffsTwo,deltaTwo,deltaDeltaTwo] = cepFeatures(audioSegmentTwo)

coeffsTwo = 14×1

 3.0899
 -20.4756
 10.4455
 -5.8759
 7.2215
 -1.2027
 -0.0236
 1.9183
 -1.2127
 2.0669
 ⋮

deltaTwo = 14×1

 -0.7382
 -0.9928
 -1.3194
 0.4230
 1.3321
 -0.8661
 -0.9819
 1.0415
 0.8257
 -0.3009
 ⋮

deltaDeltaTwo = 14×1

 -0.7382
 -0.9928
 -1.3194

3 System objects in Audio Toolbox

3-140

 0.4230
 1.3321
 -0.8661
 -0.9819
 1.0415
 0.8257
 -0.3009
 ⋮

Verify that the difference between coeffsTwo and coeffs vectors equals deltaTwo.

isequal(coeffsTwo-coeffs,deltaTwo)

ans = logical
 1

Verify that the difference between deltaTwo and delta vectors equals deltaDeltaTwo.

isequal(deltaTwo-delta,deltaDeltaTwo)

ans = logical
 1

Frequency-Domain Voice Activity Detection and Cepstral Feature Extraction

Many feature extraction techniques operate on the frequency domain. Converting an
audio signal to the frequency domain only once is efficient. In this example, you convert a
streaming audio signal to the frequency domain and feed that signal into a voice activity
detector. If speech is present, mel-frequency cepstral coefficients (MFCC) features are
extracted from the frequency-domain signal using the cepstralFeatureExtractor
System object™.

Create a dsp.AudioFileReader System object to read from an audio file.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;

Process the audio in 30 ms frames with a 10 ms hop. Create a default dsp.AsyncBuffer
object to manage overlap between audio frames.

 cepstralFeatureExtractor

3-141

samplesPerFrame = ceil(0.03*fs);
samplesPerHop = ceil(0.01*fs);
samplesPerOverlap = samplesPerFrame - samplesPerHop;

fileReader.SamplesPerFrame = samplesPerHop;
buffer = dsp.AsyncBuffer;

Create a voiceActivityDetector System object and a cepstralFeatureExtractor
System object. Specify that they operate in the frequency domain. Create a
dsp.SignalSink to log the extracted cepstral features.

VAD = voiceActivityDetector('InputDomain','Frequency');
cepFeatures = cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy','Replace');
sink = dsp.SignalSink;

In an audio stream loop:

1 Read one hop's of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under

analysis.
4 If the frame under analysis has a probability of speech greater than 0.75, extract

cepstral features and log the features using the signal sink. If the frame under
analysis has a probability of speech less than 0.75, write a vector of NaNs to the sink.

threshold = 0.75;
nanVector = nan(1,13);
while ~isDone(fileReader)
 audioIn = fileReader();
 write(buffer,audioIn);

 overlappedAudio = read(buffer,samplesPerFrame,samplesPerOverlap);
 X = fft(overlappedAudio,2048);

 probabilityOfSpeech = VAD(X);
 if probabilityOfSpeech > threshold
 xFeatures = cepFeatures(X);
 sink(xFeatures')
 else
 sink(nanVector)
 end
end

Visualize the cepstral coefficients over time.

3 System objects in Audio Toolbox

3-142

timeVector = linspace(0,15,size(sink.Buffer,1));
plot(timeVector,sink.Buffer)
xlabel('Time (s)')
ylabel('MFCC Amplitude')
legend('Log-Energy','c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12')

Extract GTCC from Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create an
audioDeviceWriter to write the audio to your sound card. Create a dsp.ArrayPlot to
visualize the GTCC over time.

 cepstralFeatureExtractor

3-143

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
deviceWriter = audioDeviceWriter(fileReader.SampleRate);
scope = dsp.ArrayPlot;

Create a cepstralFeatureExtractor that extracts GTCC.

cepFeatures = cepstralFeatureExtractor('FilterBank','Gammatone', ...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop:

1 Read in a frame of audio data.
2 Extract the GTCC from the frame of audio.
3 Visualize the GTCC.
4 Write the audio frame to your device.

while ~isDone(fileReader)
 audioIn = fileReader();
 coeffs = cepFeatures(audioIn);
 scope(coeffs)
 deviceWriter(audioIn);
end

release(cepFeatures)
release(scope)
release(fileReader)

3 System objects in Audio Toolbox

3-144

Algorithms

Auditory Cepstrum Coefficients
Auditory cepstrum coefficients are popular features extracted from speech signals for use
in recognition tasks. In the source-filter model of speech, cepstral coefficients are
understood to represent the filter (vocal tract). The vocal tract frequency response is
relatively smooth, whereas the source of voiced speech can be modeled as an impulse
train. As a result, the vocal tract can be estimated by the spectral envelope of a speech
segment.

 cepstralFeatureExtractor

3-145

The motivating idea of cepstral coefficients is to compress information about the vocal
tract (smoothed spectrum) into a small number of coefficients based on an understanding
of the cochlea. Although there is no hard standard for calculating the coefficients, the
basic steps are outlined by the diagram.

Two popular implementations of the filter bank are the mel filter bank and the
gammatone filter bank.

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and
logarithmically spaces the remaining filters.

3 System objects in Audio Toolbox

3-146

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on
the ERB scale between 50 and 8000 Hz. The filter bank is designed by
gammatoneFilterBank.

 cepstralFeatureExtractor

3-147

Log Energy
If the input (x) is a time-domain signal, the log energy is computed using the following
equation:

logE = log(sum(x2))

If the input (x) is a frequency-domain signal, the log energy is computed using the
following equation:

logE = log sum x 2 /FFTLength

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

3 System objects in Audio Toolbox

3-148

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Cepstral Feature Extractor | Voice Activity Detector | gammatoneFilterBank | gtcc |
mfcc | pitch | voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”
“Classify Gender Using Long Short-Term Memory Networks”

Introduced in R2018a

 cepstralFeatureExtractor

3-149

getFilters
Get auditory filter bank

Syntax
[filterbank,freq] = getFilters(cepFeatures)

Description
[filterbank,freq] = getFilters(cepFeatures) returns the filter bank and the
corresponding frequency bins in Hz. Each column of the filter bank corresponds to a
single bandpass filter. The filterbank is undefined until the object is locked.

Examples

Get Auditory Filter Bank

The auditory filter bank contains a set of bandpass filters that are used to extract the
cepstral features from an audio signal. The cepstral features include cepstral coefficients
(coeffs), the difference between the current and the previous cepstral coefficients
(delta), and the difference between the current and the previous delta values,
deltaDelta. The getFilters function returns the auditory filter bank and the
corresponding frequency bins.

Read an audio signal from 'SpeechDFT-16-8-mono-5secs.wav' file. Extract a 40 ms
segment from the audio data. Create a cepstralFeatureExtractor System object™
that accepts a time-domain audio input signal sampled at 8 kHz.

[audioFile, fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

3 System objects in Audio Toolbox

3-150

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 8000

 Show all properties

Pass the 40 ms audio segment as an input to the cepstralFeatureExtractor
algorithm. The algorithm computes the mel frequency coefficients, log energy, delta, and
delta-delta values of the audio segment.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

Using the getFilters function, get the filter bank that computes the cepstral features.
Each column in the filter bank contains a bandpass filter. The frequency bins
corresponding to the bandpass filters are displayed in Bins. Note that the getFilters
function requires the cepstralFeatureExtractor object to be locked.

[filterbank, freq] = getFilters(cepFeatures);

Plot the filter bank, and you can see that the filter bank columns 33 to 40 have zero
elements. These columns correspond to filters whose band edges (one or both) are above
the Nyquist frequency, (f s/2). In this example, the Nyquist frequency is 4 kHz.

plot(freq,filterbank)

 getFilters

3-151

cepFeatures.BandEdges(33:40)

ans = 1×8
103 ×

 3.6915 3.9543 4.2357 4.5371 4.8601 5.2059 5.5765 5.9733

nnz(filterbank(:,33:40))

ans = 0

Release the cepstral feature extractor object and pass a different audio signal sampled at
22.5 kHz.

3 System objects in Audio Toolbox

3-152

release(cepFeatures)
[audioFileTwo, fsTwo] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');
duration = round(0.04*fsTwo); % 40 ms
audioSegmentTwo = audioFileTwo(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fsTwo)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 22500

 Show all properties

The Nyquist frequency is 22,500/2, which is 11,250 Hz. Extract the cepstral features of
the second audio segment. Plot the filter bank, which is used to compute the cepstral
features. Zoom in on the axis for comparison.

[coeffsTwo,deltaTwo,deltaDeltaTwo] = cepFeatures(audioSegmentTwo);
[filterbankTwo, freqTwo] = getFilters(cepFeatures);
plot(freqTwo,filterbankTwo)
axis([0 8000 0 0.015])

 getFilters

3-153

All the band edges are below the Nyquist frequency, and the bandpass filters in the filter
bank have nonzero coefficients.

Input Arguments
cepFeatures — Input cepstral feature extractor System object
cepstralFeatureExtractor System object

Input cepstral feature extractor, specified as a cepstralFeatureExtractor System
object. To use the getFilters function, the object must be locked. The filter bank is

3 System objects in Audio Toolbox

3-154

defined only when the object is locked. The object is locked when you call the object
algorithm.

Output Arguments
filterbank — Auditory filter bank
matrix

Filter bank used to calculate cepstral features, returned as a matrix. Each column of the
matrix corresponds to a single bandpass filter in the filter bank. The number of columns
in the matrix is given by m – 2, where m is the length of the vector you specify in the
BandEdges property of the System object. The number of rows in the matrix corresponds
to the FFT length. By default, the FFT length equals the number of rows in the input
signal. You can also specify the FFT length through the FFTLength property of the
System object.

If the Nyquist frequency, fs/2, is less than the band edge frequencies you specify in the
BandEdges property, the coefficients of the bandpass filters that fall outside the Nyquist
range are set to zero. fs is the sample rate you specify in the SampleRate property of the
System object.
Data Types: single | double

freq — Frequency bins corresponding to filter bank (Hz)
row vector

Frequency bins corresponding to the filter bank in Hz, returned as a row vector. The
length of the vector equals the FFT length.
Data Types: single | double

See Also
System Objects
cepstralFeatureExtractor

Introduced in R2018a

 getFilters

3-155

visualize
Visualize static characteristic of dynamic range controller

Syntax
visualize(dynamicRangeController)
visualize(dynamicRangeController,inputRange)
outputLevel = visualize(___)

Description
visualize(dynamicRangeController) plots the static characteristic of the dynamic
range control object. The plot is updated automatically when properties of the object
change.

visualize(dynamicRangeController,inputRange) enables you to specify the input
range.

outputLevel = visualize(___) returns the dB output level corresponding to the
input range. You can use any of the input arguments from previous syntaxes.

Note This syntax is only available for the compressor, limiter, and expander System
objects. It is not available for the noiseGate System object.

Examples

Plot Static Characteristic

Create an object of the compressor System object™, and then plot the static
characteristic.

dynamicRangeCompressor = compressor;
visualize(dynamicRangeCompressor)

3 System objects in Audio Toolbox

3-156

The static characteristic plot updates automatically if you modify a property of the object.

dynamicRangeCompressor.Threshold = -30;

Specify Range of Static Characteristic Plot

Create an object of the expander System object™. Plot the static characteristic over the
range -15 to -5, in 0.001 dB increments.

dynamicRangeExpander = expander;
visualize(dynamicRangeExpander,-15:0.001:-5)

Get Output Level From Static Characteristic

Create an object of the limiter System object™. Get the output level of the static
characteristic over a specified range.

dynamicRangeLimiter = limiter;
inputLevel = -15:1:-5
outputLevel = visualize(dynamicRangeLimiter,inputLevel)

Input Arguments
dynamicRangeController — Dynamic range control object
object

Dynamic range control object, specified as an object of compressor , expander ,
limiter or noiseGate.

inputRange — Range to calculate static characteristic output
vector of monotonically increasing values

Range over which to calculate the output of the static characteristic.

The default input range depends on the dynamic range control object:

 visualize

3-157

• compressor –– [-50:0.01:0] dB
• limiter –– [-50:0.01:0] dB
• expander –– [-50:0.01:0] dB
• noiseGate –– [0:0.001:1] linear

Output Arguments
outputLevel — Output level (dB)
vector

Output level in dB, returned as a vector the same size as inputRange.

This output is only available for the compressor, limiter, and expander System
objects. It is not available for the noiseGate System object.

See Also
System Objects
compressor | expander | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System objects in Audio Toolbox

3-158

createAudioPluginClass
Create audio plugin class that implements functionality of System object

Syntax
createAudioPluginClass(obj)
createAudioPluginClass(obj,pluginName)

Description
createAudioPluginClass(obj) creates a System object plugin that implements the
functionality of the Audio Toolbox System object, obj. The name of the created class is
the System object variable name, obj, followed by 'Plugin', for example, objPlugin.

If the object is locked, the number of input and output channels of the plugin is equal to
the number of channels of the object. Otherwise, the number of channels is equal to 2.

createAudioPluginClass(obj,pluginName) specifies the name of your created
System object plugin class.
Example: createAudioPluginClass(obj,'coolEffect') creates a System object
plugin with class name 'coolEffect'.

Examples

Create an Audio Plugin Class From a System Object

Create a compressor object. Call createAudioPluginClass to create a System
object™ plugin class that implements the functionality of the compressor object.

cmpr = compressor;
createAudioPluginClass(cmpr)

 createAudioPluginClass

3-159

Specify Name of Created Plugin Class

Create an object of the reverberator System object™. Call
createAudioPluginClass to create a System object™ plugin class that implements the
functionality of the reverberator object, specifying the plugin class name as the second
argument.

reverb = reverberator;
createAudioPluginClass(reverb,'Garage');

Input Arguments
obj — System object to create plugin class from
Audio Toolbox System object

System object from which to create a plugin class.

pluginName — Name of created plugin class
character vector

Name of created plugin class, specified as a character vector with fewer than 64
elements.
Data Types: char

See Also
System Objects
audioOscillator | compressor | crossoverFilter | expander | graphicEQ |
limiter | multibandParametricEQ | noiseGate | octaveFilter | reverberator |
wavetableSynthesizer | weightingFilter

Topics
“Design an Audio Plugin”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

3 System objects in Audio Toolbox

3-160

getFilter
Return biquad filter object with design parameters set

Syntax
biquad = getFilter(obj)

Description
biquad = getFilter(obj)returns a dsp.BiquadFilter object, biquad. The
SOSMatrix and ScaleValues properties of the biquad filter object are set as specified
by the obj System object.

Use getFilter for the design capabilities of the obj System object and the processing
capabilities of the dsp.BiquadFilter System object.

Examples

Get Biquad Filter for Octave Filter Design

Create an octaveFilter System object™. Call getFilter on your object to return a
dsp.BiquadFilter object with design parameters specified by your octaveFilter
System object.

octFilt = octaveFilter;
biquad = getFilter(octFilt)

Get Biquad Filter for Weighting Filter Design

Create a weightingFilter System object™ and visualize the frequency response.

 getFilter

3-161

weightFilt = weightingFilter;
visualize(weightFilt)

Call getFilter on your object to return a dsp.BiquadFilter object with design
parameters specified by your weightingFilter System object. Use fvtool to visualize
the biquad filter.

biquad = getFilter(weightFilt)
fvtool(biquad,'FrequencyScale','log')

Input Arguments
obj — System object to get filter from
System object

System object that you want to get a biquad filter object from.

Output Arguments
biquad — Object of dsp.BiquadFilter
object

Object of the dsp.BiquadFilter System object.

See Also
System Objects
dsp.BiquadFilter | octaveFilter | weightingFilter

Topics
“Audio Weighting Filters”
“Octave-Band and Fractional Octave-Band Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System objects in Audio Toolbox

3-162

info
Get audio device information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information
about the System object, obj.

Examples

Get Input Audio Device Information

Create an object of the audioDeviceReader System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of input channels.

deviceReader = audioDeviceReader;
info(deviceReader)

Get Output Audio Device Information

Create an object of the audioDeviceWriter System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of output channels.

deviceWriter = audioDeviceWriter;
info(deviceWriter)

 info

3-163

Get Audio I/O Device Information

Create an object of the audioPlayerRecorder System object™ and then call info to
return a structure containing information about the selected driver, device name, and the
maximum number of input and output channels.

playRec = audioPlayerRecorder;
info(playRec)

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the System object, obj. Fields of the struct depend
on the System object.

See Also
System Objects
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Introduced in R2016a

3 System objects in Audio Toolbox

3-164

cost
Estimate implementation cost of audio System objects

Syntax
implementationCost = cost(audioObj)

Description
implementationCost = cost(audioObj) returns a structure,
implementationCost, whose fields contain information about the computation cost of
implementing the audio System object, audioObj.

Examples

Estimate Implementation Cost of Crossover Filter

Create a crossover filter with 2 crossovers with 48 dB/octave slopes. Call cost to get an
estimate of the implementation cost.

crossFilt = crossoverFilter('NumCrossovers',2,'CrossoverSlopes',48);
cost1 = cost(crossFilt)

Reduce the crossover slopes for both crossovers to 12 dB/octave. Call cost to get an
estimate of the new implementation cost.

crossFilt.CrossoverSlopes = 12;
cost2 = cost(crossFilt)

 cost

3-165

Input Arguments
audioObj — Audio System object
crossoverFilter object

Specify the input as a supported audio System object.
Data Types: object

Output Arguments
implementationCost — Estimate of implementation cost
struct

Estimate of the implementation cost of a filter, returned as struct:

Structure Field Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or -1)
NumStates Number of states
MultiplicationsPerInputSample Number of multiplication per input sample
AdditionsPerInputSample Number of additions per input sample

See Also
crossoverFilter,

Introduced in R2016a

3 System objects in Audio Toolbox

3-166

audioPlayerRecorder

Simultaneously play and record using an audio device

Description
The audioPlayerRecorder System object reads and writes audio samples using your
computer’s audio device. To use audioPlayerRecorder, you must have an audio device
and driver capable of simultaneous playback and record.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the data
flow.

To simultaneously play and record:

1 Create the audioPlayerRecorder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 audioPlayerRecorder

3-167

Creation

Syntax
playRec = audioPlayerRecorder
playRec = audioPlayerRecorder(sampleRateValue)
playRec = audioPlayerRecorder(___ ,Name,Value)

Description
playRec = audioPlayerRecorder returns a System object, playRec, that plays audio
samples to an audio device and records samples from the same audio device, in real time.

playRec = audioPlayerRecorder(sampleRateValue) sets the SampleRate
property to sampleRateValue.

playRec = audioPlayerRecorder(___ ,Name,Value) sets each property Name to
the specified Value. Unspecified properties have default values.
Example: playRec = audioPlayerRecorder(48000,'BitDepth','8-bit
integer') creates a System object, playRec, that operates at a 48 kHz sample rate and
an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Device — Device used to play and record audio data
default audio device (default) | character vector | string

3 System objects in Audio Toolbox

3-168

Device used to play and record audio data, specified as a character vector or string. The
object supports only devices enabled for simultaneous playback and recording (full-duplex
mode). Use getAudioDevices to list available devices.

Supported drivers for audioPlayerRecorder are platform-specific:

• Windows –– ASIO
• Mac –– CoreAudio
• Linux –– ALSA

Note The default audio device is the default device of your machine only if it supports
full-duplex mode. If your machine’s default audio device does not support full-duplex
mode, audioPlayerRecorder specifies as the default device the first available device it
detects that is capable of full-duplex mode. Use the info method to get the device name
associated with your audioPlayerRecorder object.

Data Types: char | string

SampleRate — Sample rate used by device to record and play audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to record and play audio data, in Hz, specified as a positive
integer. The range of SampleRate depends on your audio hardware.
Data Types: single | double

BitDepth — Data type used by device
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
integer'

Data type used by device, specified as a character vector or string.
Data Types: char | string

SupportVariableSize — Support variable frame size
false (default) | true

Option to support variable frame size, specified as false or true.

• false –– If the audioPlayerRecorder object is locked, the input must have the
same frame size at each call. The buffer size of your audio device is the same as the

 audioPlayerRecorder

3-169

input frame size. If you are using the object on Windows, open the ASIO UI to set the
sound card buffer to the frame size value.

• true –– If the audioPlayerRecorder object is locked, the input frame size can
change at each call. The buffer size of your audio device is specified through the
BufferSize property.

To minimize latency, set SupportVariableSize to false. If variable-size input is
required by your audio system, set SupportVariableSize to true.
Data Types: logical

BufferSize — Buffer size of audio device
1024 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If you are using the object on a Windows machine, use asiosettings to set the
sound card buffer size to the BufferSize value of your audioPlayerRecorder System
object.

Dependencies

To enable this property, set SupportVariableSize to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PlayerChannelMapping — Mapping between columns of played data and
channels of device
[] (default) | scalar | vector

Mapping between columns of played data and channels of output device, specified as a
scalar or as a vector of valid channel indices. The default value of this property is [],
which means that the default channel mapping is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

RecorderChannelMapping — Mapping between channels of device and columns
of recorded data
1 (default) | scalar | vector

3 System objects in Audio Toolbox

3-170

Mapping between channels of your audio device and columns of recorded data, specified
as a scalar or as a vector of valid channel indices. The default value is 1, which means
that the first recording channel on the device is used to acquire data and is mapped to a
single-column matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Syntax
audioFromDevice = playRec(audioToDevice)
[audioFromDevice,numUnderrun] = playRec(audioToDevice)
[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)

Description
audioFromDevice = playRec(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device, and returns one frame of audio,
audioFromDevice.

[audioFromDevice,numUnderrun] = playRec(audioToDevice) returns the
number of samples overrun since the last call to playRec.

[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)
returns the number of samples underrun since the last call to playRec.

Note: When you call the audioPlayerRecorder System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioPlayerRecorder at a time. To release the audio device, call release on the
audioPlayerRecorder System object.

Input Arguments
audioToDevice — Audio to device
matrix

 audioPlayerRecorder

3-171

Audio signal to write to device, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double | int8 | int16 | int32 | uint8

Output Arguments
audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix the same size and data type as
audioToDevice.
Data Types: single | double | int16 | int32 | uint8

numUnderrun — Number of samples underrun
scalar

Number of samples by which the player queue was underrun since the last call to
playRec. Underrun refers to output signal silence. Output signal silence occurs if the
device buffer is empty when it is time for digital-to-analog conversion. This results when
the processing loop in MATLAB does not supply samples at the rate the sound card
demands.
Data Types: uint32

numOverrun — Number of samples overrun
scalar

Number of samples by which the recorder queue was overrun since the last call to
playRec. Overrun refers to input signal drops. Input signal drops occur when the
processing stage does not keep pace with the acquisition of samples.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

3 System objects in Audio Toolbox

3-172

Specific to audioPlayerRecorder
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Synchronize Playback and Recording

Synchronize playback and recording using a single audio device. If synchronization is lost,
print information about samples dropped.

Create objects to read from and write to an audio file. Create an audioPlayerRecorder
object to play an audio signal to your device and simultaneously record audio from your
device.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',256);
fs = fileReader.SampleRate;

fileWriter = dsp.AudioFileWriter('Counting-PlaybackRecorded.wav', ...
 'SampleRate',fs);

aPR = audioPlayerRecorder('SampleRate',fs);

In a frame-based loop:

1 Read an audio signal from your file.
2 Play the audio signal to your device and simultaneously record audio from your

device. Use the optional nUnderruns and nOverruns output arguments to track any
loss of synchronization.

 audioPlayerRecorder

3-173

3 Write your recorded audio to a file.

Once the loop is completed, release the objects to free devices and resources.

while ~isDone(fileReader)
 audioToPlay = fileReader();

 [audioRecorded,nUnderruns,nOverruns] = aPR(audioToPlay);

 fileWriter(audioRecorded)

 if nUnderruns > 0
 fprintf('Audio player queue was underrun by %d samples.\n',nUnderruns);
 end
 if nOverruns > 0
 fprintf('Audio recorder queue was overrun by %d samples.\n',nOverruns);
 end
end

release(fileReader);
release(fileWriter);
release(aPR);

Audio player queue was underrun by 1792 samples.
Audio player queue was underrun by 256 samples.

Specify Nondefault Channel Mapping

The audioPlayerRecorder System object™ enables you to specify a nondefault
mapping between the channels of your audio device and the data sent to and received
from your audio device. To run this example, your audio device must have at least two
channels and be capable of full-duplex mode.

Using Default Settings

Create an audioPlayerRecorder object with default settings. The
audioPlayerRecorder is automatically configured to a compatible device and driver.

aPR = audioPlayerRecorder;

The audioPlayerRecorder combines reading from your device and writing to your
device in a single call: audioFromDevice = aPR(audioToDevice). Calling the
audioPlayerRecorder with default settings:

3 System objects in Audio Toolbox

3-174

• Maps columns of audioToDevice to output channels of your device
• Maps input channels of your device to columns of audioFromDevice

By default, audioFromDevice is a one-column matrix corresponding to channel 1 of your
audio device. To view the maximum number of input and output channels of your device,
use the info method.

aPRInfo = info(aPR);

aPRInfo is returned as a structure with fields containing information about your selected
driver, audio device, and the maximum number of input and output channels in your
configuration.

Call the audioPlayerRecorder with a two-column matrix. By default, column 1 is
mapped to output channel 1, and column 2 is mapped to output channel 2. The
audioPlayerRecorder returns a one-column matrix with the same number of rows as
the audioToDevice matrix.

highToneGenerator = audioOscillator('Frequency',600,'SamplesPerFrame',256);
lowToneGenerator = audioOscillator('Frequency',200,'SamplesPerFrame',256);

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

Nondefault Channel Mapping for Audio Output

Specify a nondefault channel mapping for your audio output. Specify that column 1 of
audioToDevice maps to channel 2, and that column 2 of audioToDevice maps to

 audioPlayerRecorder

3-175

channel 1. To modify the channel mapping, the audioPlayerRecorder object must be
unlocked.

Run the audioPlayerRecorder object. If you are using headphones or stereo speakers,
notice that the high frequency and low frequency tones have switched speakers.

release(aPR)
aPR.PlayerChannelMapping = [2,1];

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

Nondefault Channel Mapping for Audio Input

Specify a nondefault channel mapping for your audio input. Record data from only
channel two of your device. In this case, channel 2 is mapped to a one-column matrix. Use
size to verify that audioFromDevice is a 256-by-1 matrix.

release(aPR)
aPR.RecorderChannelMapping = 2;

audioFromDevice = aPR(audioToDevice);

[rows,col] = size(audioFromDevice)

rows =

3 System objects in Audio Toolbox

3-176

 256

col =

 1

As a best practice, release your audio device once complete.

release(aPR)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library
files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

 audioPlayerRecorder

3-177

See Also
Functions
asiosettings | getAudioDevices

Blocks
Audio Device Reader | Audio Device Writer

System Objects
audioDeviceReader | audioDeviceWriter | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2017a

3 System objects in Audio Toolbox

3-178

audioDeviceReader
Record from sound card

Description
The audioDeviceReader System object reads audio samples using your computer’s
audio input device.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device reader data flow.

The audio device reader specifies the driver, the device and its attributes, and the data
type and size output from your System object.

To stream data from an audio device:

1 Create the audioDeviceReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 audioDeviceReader

3-179

Creation

Syntax
deviceReader = audioDeviceReader
deviceReader = audioDeviceReader(sampleRateValue)
deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
deviceReader = audioDeviceReader(___ ,Name,Value)

Description
deviceReader = audioDeviceReader returns a System object, deviceReader, that
reads audio samples using an audio input device in real time.

deviceReader = audioDeviceReader(sampleRateValue) sets the SampleRate
property to sampleRateValue.

deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
sets the SamplesPerFrame property to sampPerFrameValue.

deviceReader = audioDeviceReader(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: deviceReader = audioDeviceReader(16000,'BitDepth','8-bit
integer') creates a System object, deviceReader, that operates at a 16 kHz sample
rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

3 System objects in Audio Toolbox

3-180

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card
buffer size to the SamplesPerFrame value of your audioDeviceReader System
object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI
drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.
Data Types: char | string

Device — Device used to acquire audio samples
default audio device (default) | character vector | string

Device used to acquire audio samples, specified as a character vector or string. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.

Dependencies

To enable this property, set ChannelMappingSource to 'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 audioDeviceReader

3-181

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

Frame size read from audio device, specified as a positive integer. SamplesPerFrame is
also the size of your device buffer and the number of columns of the output matrix
returned by your audioDeviceReader object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer.
The range of SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit
integer'

Data type used by device to acquire audio data, specified as a character vector or string.
Data Types: char | string

ChannelMappingSource — Source of mapping between device channels and
output matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the
output matrix, specified as 'Auto' or 'Property'.

• 'Auto' –– The default settings determine the mapping between device channels and
output matrix. For example, suppose that your audio device has six channels available,
and you set NumChannels to 6. The output from a call to your audio device reader is a
six-column matrix. Column 1 corresponds to channel 1, column 2 corresponds to
channel 2, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between
channels of your audio device and columns of the output matrix.

Data Types: char | string

3 System objects in Audio Toolbox

3-182

ChannelMapping — Nondefault mapping between device channels and output
matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the
output matrix, specified as a vector of valid channel indices. See “Specify Channel
Mapping for audioDeviceReader” on page 3-189 for more information.

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

Data type of the output, specified as a character vector or string.

Note If OutputDataType is specified as 'double' or 'single', the audio device
reader outputs data in the range [–1, 1]. For other data types, the range is [min, max] of
the specified data type.

Data Types: char | string

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioFromDevice = deviceReader()

 audioDeviceReader

3-183

[audioFromDevice,numOverrun] = deviceReader()

Description
audioFromDevice = deviceReader() returns one frame of audio samples from the
selected audio input device.

[audioFromDevice,numOverrun] = deviceReader() returns the number of
samples by which the audio reader's queue was overrun since the last call to
deviceReader.

Note: When you call the audioDeviceReader System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioDeviceReader at a time. To release the audio device, call release on your
audioDeviceReader object.

Output Arguments
audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix. The specified number of channels
and the SamplesPerFrame property determine the matrix size. The data type of the matrix
depends on the OutputDataType property.
Data Types: single | double | int16 | int32 | uint8

numOverrun — Number of samples overrun
scalar

Number of samples by which the audio reader's queue was overrun since the last call to
deviceReader.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

3 System objects in Audio Toolbox

3-184

Specific to audioDeviceReader
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Read from Microphone and Write to Audio File

Record 10 seconds of speech with a microphone and send the output to a .wav file.

Create an audioDeviceReader System object™ with default settings. Call setup to
reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;
setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter(...
 'mySpeech.wav',...
 'FileFormat','WAV');

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from
the device, and write the audio signal frame to a specified file. The file saves to your
current folder.

disp('Speak into microphone now.')
tic;
while toc < 10
 acquiredAudio = deviceReader();
 fileWriter(acquiredAudio);

 audioDeviceReader

3-185

end
disp('Recording complete.')

Release the audio device and close the output file.

release(deviceReader);
release(fileWriter);

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data. In
this example, you modify default properties of your audioDeviceReader System
object™ to reduce latency.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Set the SamplesPerFrame property of your audioDeviceReader System object to 64.
Calculate the latency.

deviceReader.SamplesPerFrame = 64;
fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Set the SampleRate property of your audioDeviceReader System object to 96,000.
Calculate the latency.

deviceReader.SampleRate = 96000;
fprintf('Latency due to device buffer: %f seconds.\n',...
 deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does not
keep pace with the device. Determine overrun of an audio stream loop, add an artificial

3 System objects in Audio Toolbox

3-186

computational load to the audio stream loop, and then modify properties of your
audioDeviceReader System object™ to decrease overrun. Your results depend on your
computer.

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and
SampleRate set to 44,100. Call setup to reduce the computational load of initialization
in an audio stream loop.

deviceReader = audioDeviceReader(...
 'SamplesPerFrame',256,...
 'SampleRate',44100);
setup(deviceReader);

Create a dsp.AudioFileWriter System object. Specify the file name and data type to
write.

fileWriter = dsp.AudioFileWriter(...
 'mySpeech.wav',...
 'FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from
your device, and write the audio signal frame to a specified file.

totalOverrun = 0;
disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %d.\n',...
 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.
Recording complete.
Total number of samples overrun: 1280.
Total seconds overrun: 2.902494e-02.

Release your audioDeviceReader and dsp.AudioDeviceWriter System objects and
zero your counter variable.

 audioDeviceReader

3-187

release(fileWriter);
release(deviceReader);
totalOverrun = 0;

Use pause to add an artificial computational load to your audio stream loop. The
computational load causes the audio stream loop to go slower than the device, which
causes acquired samples to be dropped.

disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %d.\n',...
 double(totalOverrun)/double(deviceReader.SampleRate));

Speak into microphone now.
Recording complete.
Total number of samples overrun: 96256.
Total seconds overrun: 2.182676e+00.

Release your audioDeviceReader and dsp.AudioFileWriter System objects, and set
the SamplePerFrame property to 512. The device buffer size increases so that the device
now takes longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter);
release(deviceReader);
deviceReader.SamplesPerFrame = 512;
totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified
SamplesPerFrame property.

disp('Speak into microphone now.')
tic;
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);

3 System objects in Audio Toolbox

3-188

 pause(0.01)
end
fprintf('Recording complete.\n')
fprintf('Total number of samples overrun: %d.\n',...
 totalOverrun);
fprintf('Total seconds overrun: %f.\n',...
 totalOverrun/deviceReader.SampleRate);

Speak into microphone now.
Recording complete.
Total number of samples overrun: 2048.
Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify non-default channel mapping for an audioDeviceReader System object™. This
example is hardware specific. It assumes that your computer has a default audio input
device with two available channels.

Create an audioDeviceReader System object with default settings.

deviceReader = audioDeviceReader;

The default number of channels is 1. Call your audioDeviceReader System object like a
function with no arguments to read one frame of data from your audio device. Verify that
the output data matrix has one column.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

 1

Use info to determine the maximum number of input channels available with your
specified Driver and Device configuration.

 audioDeviceReader

3-189

info(deviceReader)

ans =

 struct with fields:

 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Capture Driver'
 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader System object
must be unlocked to change this property.

release(deviceReader);
deviceReader.ChannelMappingSource = 'Property'

deviceReader =

 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SamplesPerFrame: 1024
 SampleRate: 44100

 Use get to show all properties

By default, if ChannelMappingSource is set to 'Property', all available channels are
mapped to the output. Call your audioDeviceReader System object to read one frame
of data from your audio device. Verify that the output data matrix has two columns.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength =

 1024

numChannels =

3 System objects in Audio Toolbox

3-190

 2

Use the ChannelMapping property to specify an alternative mapping between channels
of your device and columns of the output matrix. Indicate the input channel number at an
index corresponding to the output column. To change this property, first unlock the
audioDeviceReader System object.

release(deviceReader);
deviceReader.ChannelMapping = [2,1];

Now when you call your audioDeviceReader:

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

deviceReader.ChannelMapping = 2;

If you call your audioDeviceReader, input channel 2 of your device maps to an output
vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library
files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

 audioDeviceReader

3-191

See Also
Functions
asiosettings | getAudioDevices

Blocks
Audio Device Reader

System Objects
audioDeviceWriter | audioPlayerRecorder | dsp.AudioFileReader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2016a

3 System objects in Audio Toolbox

3-192

audioDeviceWriter
Play to sound card

Description
The audioDeviceWriter System object writes audio samples to an audio output device.
Properties of the audio device writer specify the driver, the device, and device attributes
such as sample rate, bit depth, and buffer size.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the
audio device writer data flow.

To stream data to an audio device:

1 Create the audioDeviceWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 audioDeviceWriter

3-193

Creation

Syntax
deviceWriter = audioDeviceWriter
deviceWriter = audioDeviceWriter(sampleRateValue)
deviceWriter = audioDeviceWriter(___ ,Name,Value)

Description
deviceWriter = audioDeviceWriter returns a System object, deviceWriter, that
writes audio samples to an audio output device in real time.

deviceWriter = audioDeviceWriter(sampleRateValue) sets the SampleRate
property to sampleRateValue.

deviceWriter = audioDeviceWriter(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: deviceWriter = audioDeviceWriter(48000,'BitDepth','8-bit
integer') creates a System object, deviceWriter, that operates at a 48 kHz sample
rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or
'WASAPI'.

3 System objects in Audio Toolbox

3-194

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO'
driver option, install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card
buffer size to the buffer size of your audioDeviceWriter System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI
drivers, set SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must have an Audio Toolbox licence. If the
toolbox is not installed, specifying nondefault Driver values returns an error.
Data Types: char | string

Device — Device used to play audio samples
default audio device (default) | character vector | string scalar

Device used to play audio samples, specified as a character vector or string scalar. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit
float'

Data type used by the device, specified as a character vector or string scalar. Before
performing digital-to-analog conversion, the input data is cast to a data type specified by
BitDepth.

 audioDeviceWriter

3-195

To specify a nondefault BitDepth, you must have an Audio Toolbox licence. If the toolbox
is not installed, specifying a nondefault BitDepth returns an error.
Data Types: char | string

SupportVariableSizeInput — Support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false –– If the audioDeviceWriter object is locked, the input must have the same
frame size at each call. The buffer size of your audio device is the same as the input
frame size.

• true –– If the audioDeviceWriter object is locked, the input frame size can change
at each call. The buffer size of your audio device is specified through the BufferSize
property.

Data Types: char

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer
size to the BufferSize value of your audioDeviceWriter System object.

Dependencies

To enable this property, set SupportVariableSizeInput to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ChannelMappingSource — Source of mapping between input matrix and device
channels
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device,
specified as 'Auto' or 'Property'.

3 System objects in Audio Toolbox

3-196

• 'Auto' –– Default settings determine the mapping between columns of input matrix
and channels of audio output device. For example, suppose that your input is a matrix
with four columns, and your audio device has four channels available. Column 1 of
your input data writes to channel 1 of your device, column 2 of your input data writes
to channel 2 of your device, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between
columns of input matrix and channels of audio output device.

Data Types: char | string

ChannelMapping — Nondefault mapping between input matrix and device
channels
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of input matrix and channels of output device,
specified as a scalar or vector of valid channel indices. See the “Specify Channel Mapping
for audioDeviceWriter” on page 3-203 example for more information.

To selectively map between columns of the input matrix and your sound card's output
channels, you must have an Audio Toolbox licence. If the toolbox is not installed,
specifying a nondefault ChannelMapping returns an error.

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

 audioDeviceWriter

3-197

Syntax
numUnderrun = deviceWriter(audioToDevice)

Description
numUnderrun = deviceWriter(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device and returns the number of audio samples
underrun since the last call to deviceWriter.

Note: When you call the audioDeviceWriter System object, the audio device
specified by the Device property is locked. An audio device can be locked by only one
audioDeviceWriter at a time. To release the audio device, call release on your
audioDeviceWriter System object.

Input Arguments
audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are
treated as independent audio channels.

If audioToDevice is of data type 'double' or 'single', the audio device writer clips
values outside the range [–1, 1]. For other data types, the allowed input range is [min,
max] of the specified data type.
Data Types: single | double | int16 | int32 | uint8

Output Arguments
numUnderrun — Number of samples underrun
scalar

Number of samples by which the audio device writer queue was underrun since the last
call to deviceWriter.
Data Types: uint32

3 System objects in Audio Toolbox

3-198

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceWriter
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader System object™ with default settings. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileInfo.SampleRate);

Call setup to reduce the computational load of initialization in an audio stream loop.

 audioDeviceWriter

3-199

setup(deviceWriter,...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Use the info function to obtain the characteristic information about the device writer.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

In an audio stream loop, read an audio signal frame from the file, and write the frame to
your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader);
release(deviceWriter);

Reduce Latency due to Output Device Buffer

Latency due to the output device buffer is the time delay of writing one frame of data.
Modify default properties of your audioDeviceWriter System object™ to reduce
latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default
settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that
of the audio file reader.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

3 System objects in Audio Toolbox

3-200

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate %#ok

bufferLatency = 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to
256. Calculate the buffer latency in seconds.

fileReader.SamplesPerFrame = 256;
bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency = 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does
not keep pace with the output device. Determine the underrun of an audio stream loop,
add artificial computational load to the audio stream loop, and then modify properties of
your audioDeviceWriter System object™ to decrease underrun. Your results depend
on your computer.

Create a dsp.AudioFileReader System object, and specify the file to read. Use the
audioinfo function to return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter System object. Use the SampleRate of the file reader as
the SampleRate of the device writer. Call setup to reduce the computational load of
initialization in an audio stream loop.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);
setup(deviceWriter, ...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Run your audio stream loop with input from file and output to device. Print the total
samples underrun and the underrun in seconds.

totalUnderrun = 0;
while ~isDone(fileReader)

 audioDeviceWriter

3-201

 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.
Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter System objects and set
your counter variable to zero.

release(fileReader);
release(deviceWriter);
totalUnderrun = 0;

Use pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes
the audio stream loop to go slower than the device, which results in periods of silence in
the output audio signal.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 69632.
Total seconds underrun: 3.157914e+00.

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter
variable to zero.

release(fileReader);
release(deviceWriter);
totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the
SupportVariableSizeInput property of your audioDeviceWriter System object is

3 System objects in Audio Toolbox

3-202

set to false, the buffer size of your audio device is the same size as the input frame size.
Increasing your device buffer size decreases underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileReader.SamplesPerFrame = 2048;
fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);
setup(deviceWriter, ...
 zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels));

Calculate the total underrun.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n', ...
 totalUnderrun);
fprintf('Total seconds underrun: %d.\n', ...
 double(totalUnderrun)/double(deviceWriter.SampleRate));

Total samples underrun: 0.
Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However,
increasing the frame size also increases latency. Other approaches to reduce underrun
include:

• Increasing the buffer size independent of input frame size. To increase buffer size
independent of input frame size, you must first set SupportVariableSizeInput to
true. This approach also increases latency.

• Decreasing the sample rate. Decreasing the sample rate reduces both latency and
underrun at the cost of signal resolution.

• Choosing an optimal driver and device for your system.

 audioDeviceWriter

3-203

Specify Channel Mapping for audioDeviceWriter

Specify nondefault channel mapping for an audioDeviceWriter System object™. This
example is hardware specific. It assumes that your computer has a default audio output
device with two available channels.

Create an audioDeviceWriter System object™ with default settings.

deviceWriter = audioDeviceWriter;

By default, the audioDeviceWriter System object writes the maximum number of
channels available, corresponding to the columns of the input matrix. Use info to get the
maximum number of channels of your device.

info(deviceWriter)

ans =

 struct with fields:

 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your
audio output device. Both channels correspond to the one column of data.

Use the audioOscillator System object to output a tone to your audioDeviceWriter
System object. Your object, sineGenerator, returns a vector when called.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the
tone from both channels.

count = 0;
while count < 500
 sine = sineGenerator();
 deviceWriter(sine);
 count = count + 1;
end

3 System objects in Audio Toolbox

3-204

If your audioDeviceWriter System object is called with two columns of data, two
channels are written to your audio output device. The first column corresponds to channel
1 of your audio output device, and the second column corresponds to channel 2 of your
audio output device.

Write a two-column matrix to your audio output device. Column 1 corresponds to the sine
tone, and column 2 corresponds to a static signal. If you are using headphones, you can
hear the tone from one speaker and the static from the other speaker.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

Specify alternative mappings between channels of your device and columns of the output
matrix by indicating the output channel number at an index corresponding to the input
column. Set ChannelMappingSource to 'Property'. Indicate that the first column of
your input data writes to channel 2 of your output device, and that the second column of
your input data writes to channel 1 of your output device. To modify the channel mapping,
you must first unlock the audioDeviceReader System object.

release(deviceWriter);
deviceWriter.ChannelMappingSource = 'Property';
deviceWriter.ChannelMapping = [2,1];

Play your audio signals with reversed mapping. If you are using headphones, notice that
the tone and static have switched speakers.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);

 audioDeviceWriter

3-205

 count = count + 1;
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library
files (.dll files) included with MATLAB. Use the packNGo function to package the
code generated from this object and all the relevant files in a compressed zip file.
Using this zip file, you can relocate, unpack, and rebuild your project in another
development environment where MATLAB is not installed. For more details, see “Run
Audio I/O Features Outside MATLAB and Simulink”.

See Also
Audio Device Writer | asiosettings | audioDeviceReader | audioPlayerRecorder |
dsp.AudioFileReader | dsp.AudioFileWriter | getAudioDevices

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”
“Measure Audio Latency”
“Real-Time Audio in MATLAB”

Introduced in R2016a

3 System objects in Audio Toolbox

3-206

audioOscillator
Generate sine, square, and sawtooth waveforms

Description
The audioOscillator System object generates tunable waveforms. Typical uses include
the generation of test signals for test benches, and the generation of control signals for
audio effects. Properties of the audioOscillator System object specify the type of
waveform generated.

To generate tunable waveforms:

1 Create the audioOscillator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
osc = audioOscillator
osc = audioOscillator(signalTypeValue)

 audioOscillator

3-207

osc = audioOscillator(signalTypeValue,frequencyValue)
osc = audioOscillator(___ ,Name,Value)

Description
osc = audioOscillator creates an audio oscillator System object, osc, with default
property values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue,frequencyValue) sets the Frequency
property to frequencyValue.

osc = audioOscillator(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: osc =
audioOscillator('SignalType','sine','Frequency',8000,'DCOffset',1)
creates a System object, osc, which generates 8 kHz sinusoids with a DC offset of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine',
'square', or 'sawtooth'.

The waveforms are generated using the algorithms specified by the sin, square, and
sawtooth functions.

3 System objects in Audio Toolbox

3-208

Tunable: No
Data Types: char | string

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real
scalars greater than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length NumTones.
• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars
greater than or equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

The generated waveform is multiplied by the value specified by Amplitude at the output,
before DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

Normalized phase offset of generated waveform, specified as a real scalar or vector of
real scalars with values in the range [0, 1]. The range is a normalized 2π-radian interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.

 audioOscillator

3-209

• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector
of real scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

Tunable: Yes
Data Types: single | double

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator.

Individual tones are generated based on values specified by Frequency, Amplitude,
PhaseOffset, and DCOffset.

Tunable: No
Dependencies

To enable this property, set SignalType to 'sine'.
Data Types: single | double

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

Square waveform duty cycle, specified as a scalar in the range [0, 1].

Square waveform duty cycle is the percentage of one period in which the waveform is
above the median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

3 System objects in Audio Toolbox

3-210

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'square'.
Data Types: single | double

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width, specified as a scalar in the range [0, 1].

Sawtooth width determines the point in a sawtooth waveform period at which the
maximum occurs.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'sawtooth'.
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your audioOscillator object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

Sample rate of generated waveform in Hz, specified as a positive scalar greater than
twice the value specified by Frequency.

Tunable: Yes
Data Types: single | double

 audioOscillator

3-211

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

Data type of generated waveform, specified as 'double' or 'single'.

Tunable: Yes
Data Types: char | string

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
waveform = osc()

Description
waveform = osc() generates a waveform output, waveform. The type of waveform is
specified by the algorithm and properties of the System object, osc.

Output Arguments
waveform — Waveform output from oscillator
column vector

Waveform output from the audio oscillator, returned as a column vector with length
specified by the SamplesPerFrame property.
Data Types: single | double

3 System objects in Audio Toolbox

3-212

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioOscillator
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the audioOscillator System object to user-facing parameters:

Property Range Mapping Units
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear no units
DCOffset [–10, 10] linear no units
DutyCycle
(available when you
set SignalType to
'square')

[0, 1] linear no units

 audioOscillator

3-213

Property Range Mapping Units
Width (available
when you set
SignalType to
'sawtooth')

[0, 1] linear no units

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

osc = audioOscillator;

Create a time scope to visualize the variable-frequency sine wave generated by the audio
oscillator.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your sine
wave in 50-Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 sineWave = osc();
 scope(sineWave);
 if mod(counter,1000)==0
 osc.Frequency = osc.Frequency + 50;
 end
end

3 System objects in Audio Toolbox

3-214

Create a Melody by Tuning Oscillation Frequency

Tune the frequency of an audio oscillator at regularly spaced intervals to create a melody.
Play the melody to your audio output device.

Create a structure to hold the frequency values of notes in a melody.

 audioOscillator

3-215

notes = struct('C4',261.63,'E4',329.63,'G4sharp',415.30,'A4',440,'B4',493.88, ...
 'C5',523.25,'D5',587.25,'D5sharp',622.25,'E5',659.25,'Silence',0);

Create audioOscillator and audioDeviceWriter System objects™. Use the default
settings.

osc = audioOscillator;
aDW = audioDeviceWriter;

Create a vector with the initial melody of Fur Elise.

melody = [notes.Silence notes.Silence,...
 notes.E5 notes.D5sharp notes.E5 notes.D5sharp notes.E5 notes.B4 ...
 notes.D5 notes.C5 notes.A4 notes.A4 notes.Silence ...
 notes.C4 notes.E4 notes.A4 notes.B4 notes.B4 notes.Silence ...
 notes.E4 notes.G4sharp notes.B4 notes.C5 notes.C5 notes.Silence];

Specify the note duration in seconds. In an audio stream loop, call your audio oscillator
and write the sound to your audio device. Update the frequency of the audio oscillator in
noteDuration time steps to follow the melody. As a best practice, release your objects
once complete.

noteDuration = 0.3;

i = 1;
tic
while i < numel(melody)
 tone = osc();
 aDW(tone);
 if toc >= noteDuration
 i = i + 1;
 osc.Frequency = melody(i);
 tic
 end
end

release(osc);
release(aDW);

3 System objects in Audio Toolbox

3-216

Control Cutoff Frequency of Lowpass Filter

Create a low-frequency oscillator (LFO) lowpass filter, using the audioOscillator as a
control signal.

Create dsp.AudioFileReader and audioDeviceWriter System objects to read from
an audio file and write to your audio device. Create a biquad filter object to apply lowpass
filtering to your audio signal.

fileReader = dsp.AudioFileReader('Filename','Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
lowpassFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Create an audio oscillator object. Your audio oscillator controls the cutoff frequency of the
lowpass filter in an audio stream loop.

osc = audioOscillator('SignalType','sawtooth', ...
 'DCOffset',0.05, ...
 'Amplitude',0.03, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',fileReader.SampleRate, ...
 'Frequency',5);

In a loop, filter the audio signal through the lowpass filter. Write the output signal to your
audio device.

while ~isDone(fileReader)
 audioIn = fileReader();
 ctrlSignal = osc();
 [B,A] = designVarSlopeFilter(48,ctrlSignal(end));
 audioOut = lowpassFilter(audioIn,B,A);
 deviceWriter(audioOut);
end

As a best practice, release objects once complete.

release(osc)
release(fileReader)
release(deviceWriter)

For a more complete implementation of an LFO Filter, see audiopluginexample.LFOFilter
in the “Audio Plugin Example Gallery”.

 audioOscillator

3-217

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
wavetableSynthesizer

Introduced in R2016a

3 System objects in Audio Toolbox

3-218

crossoverFilter
Audio crossover filter

Description
The crossoverFilter System object implements an audio crossover filter, which is used
to split an audio signal into two or more frequency bands. Crossover filters are multiband
filters whose overall magnitude frequency response is flat.

To implement an audio crossover filter:

1 Create the crossoverFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 crossoverFilter

3-219

Creation

Syntax
crossFilt = crossoverFilter
crossFilt = crossoverFilter(nCrossovers)
crossFilt = crossoverFilter(nCrossovers,xFrequencies)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs)
crossFilt = crossoverFilter(___ ,Name,Value)

Description
crossFilt = crossoverFilter creates a System object, crossFilt, that
implements an audio crossover filter.

crossFilt = crossoverFilter(nCrossovers) sets the NumCrossovers property to
nCrossovers.

crossFilt = crossoverFilter(nCrossovers,xFrequencies) sets the
CrossoverFrequencies property to xFrequencies.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes) sets the
CrossoverSlopes property to xSlopes.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs) sets
the SampleRate property to Fs.

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with
two crossovers located at 100 Hz and 800 Hz, and crossover slopes of 6 dB/octave and 48
dB/octave, respectively.

3 System objects in Audio Toolbox

3-220

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

Number of magnitude response band crossings, specified as a scalar integer in the range
1 to 4.

The number of bands output when implementing crossover filtering is one more than the
NumCrossovers value.

Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length
NumCrossovers.

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

 crossoverFilter

3-221

Tunable: Yes
Data Types: single | double

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range
[6:6:48]. If a specified crossover slope is not inside the range, the slope is rounded to the
nearest allowed value.

• If CrossoverSlopes is a scalar, all two-band component crossover slopes take that
value.

• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band
component crossover slopes take those values.

Crossover slopes are the slopes of individual bands at the associated crossover frequency,
as specified in the two-band component crossover.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3 System objects in Audio Toolbox

3-222

Syntax
[band1,...,bandN] = crossFilt(audioIn)

Description
[band1,...,bandN] = crossFilt(audioIn) applies a crossover filter on the input,
audioIn, and returns the filtered output bands, [band1,...,bandN], where N =
NumCrossovers + 1.

Input Arguments
audioIn — Audio input to crossover filter
matrix

Audio input to the crossover filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
[band1,...,bandN] — Audio bands output from crossover filter
set of matrices

Audio bands output from the crossover filter, returned as a set of N bands. The
NumCrossovers property determines the number of return arguments: N =
NumCrossovers + 1. The size of each output argument is the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

 crossoverFilter

3-223

Specific to crossoverFilter
visualize Visualize magnitude response of crossover filter
cost Estimate implementation cost of audio System objects
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the crossoverFilter System object to user-facing parameters:

Property Range Mapping Unit
CrossoverFrequen
cies

[20, 20000] linear Hz

CrossoverSlopes [6, 48] linear dB/octave

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter System object™ to split Gaussian noise into three separate
frequency bands.

Create a 5 second noise signal that assumes a 12,000 Hz sample rate.

3 System objects in Audio Toolbox

3-224

noise = randn(12000*5,1);

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 4 kHz and 8 kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.

crossFilt = crossoverFilter(...
 'NumCrossovers',2,...
 'CrossoverFrequencies',[4000,8000],...
 'CrossoverSlopes',48,...
 'SampleRate',24000);

Visualize the magnitude response of your crossover filter object.

visualize(crossFilt)

Call your crossover filter like a function with the noise signal as the argument.

[y1,y2,y3] = crossFilt(noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700]);
subplot(4,1,1)
 spectrogram(noise,120,100,6000,24000,'yaxis')
 title('Noise')
subplot(4,1,2)
 spectrogram(y1,120,100,6000,24000,'yaxis')
 title('y1')
subplot(4,1,3)
 spectrogram(y2,120,100,6000,24000,'yaxis')
 title('y2')
subplot(4,1,4)
 spectrogram(y3,120,100,6000,24000,'yaxis')
 title('y3')

Split Audio Signal into Three Bands

Use the crossoverFilter System object™ to split an audio signal into three frequency
bands.

 crossoverFilter

3-225

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the
sample rate of the reader as the sample rate of the writer. Call setup to reduce the
computation load of initialization in an audio stream loop.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(fileReader)
setup(deviceWriter,ones(samplesPerFrame,2))

Create a crossoverFilter System object with 2 crossovers (3 bands), crossover
frequencies at 500 Hz and 1 kHz, and a slope of 18 dB/octave. Use the sample rate of the
reader as the sample rate of the crossover filter.

crossFilt = crossoverFilter(...
 'NumCrossovers',2, ...
 'CrossoverFrequencies',[500,1000], ...
 'CrossoverSlopes',18, ...
 'SampleRate',fileReader.SampleRate);

setup(crossFilt,ones(samplesPerFrame,2))

Visualize the bands of the crossover filter.

visualize(crossFilt)

Get the cost of the crossover filter.

cost(crossFilt)

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fileReader.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title', ...
 'Crossover Bands and Reconstructed Signal', ...

3 System objects in Audio Toolbox

3-226

 'ShowLegend',true, ...
 'ChannelNames',{'Original Signal','Band 1', ...
 'Band 2','Band 3','Sum'});

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the
crossover bands, and the reconstructed signal (sum of bands).

setup(scope,ones(samplesPerFrame,5))
count = 0;
while count < (fileReader.SampleRate/samplesPerFrame)*10
 originalSignal = fileReader();
 [band1,band2,band3] = crossFilt(originalSignal);
 sumOfBands = band1 + band2 + band3;
 scope([originalSignal(:,1), ...
 band1(:,1), ...
 band2(:,1), ...
 band3(:,1), ...
 sumOfBands(:,1)])
 deviceWriter(sumOfBands);
 count = count+1;
end

release(fileReader)
release(crossFilt)
release(scope)
release(deviceWriter)

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers
to the s, z, and sh sounds in speech, which can be disproportionately emphasized during
recording. es sounds fall under the category of unvoiced speech with all consonants and
have a higher frequency than voiced speech. In this example, you apply split-band de-
essing to a speech signal by separating the signal into high and low frequencies, applying
an expander to diminish the sibilant frequencies, and then remixing the channels.

Create a dsp.AudioFileReader System object™ and an audioDeviceWriter System
object to read from a sound file and write to an audio device. Listen to the unprocessed
signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Sibilance.wav'));

 crossoverFilter

3-227

deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

Create a dsp.TimeScope System object to visualize the original and processed audio
signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',44100*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.

3 System objects in Audio Toolbox

3-228

2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRExpander)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by
the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

 crossoverFilter

3-229

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...

3 System objects in Audio Toolbox

3-230

 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRCompressor)

 crossoverFilter

3-231

Tune Crossover Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a crossoverFilter to
process the audio data. Call visualize to plot the frequency responses of the filters.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate);
visualize(xFilt)

Call parameterTuner to open a UI to tune parameters of the crossover filter while
streaming.

parameterTuner(xFilt)

3 System objects in Audio Toolbox

3-232

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply crossover filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the crossover filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [low,high] = xFilt(audioIn);
 deviceWriter([low(:,1),high(:,1)]);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(xFilt)

Algorithms
The crossover System object is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented with
Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair
Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

 crossoverFilter

3-233

LP and HP are Butterworth filters of order N, implemented as direct-form Ⅱ transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair
Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form Ⅱ transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches
of your crossover pair are in-phase.

Even-Order Three-Band Filter
Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

3 System objects in Audio Toolbox

3-234

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of
the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems."

Journal of Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 crossoverFilter

3-235

See Also
Blocks
Crossover Filter

System Objects
multibandParametricEQ

Introduced in R2016a

3 System objects in Audio Toolbox

3-236

visualize
Visualize magnitude response of crossover filter

Syntax
visualize(crossFilt)
visualize(crossFilt,NFFT)

Description
visualize(crossFilt) plots the magnitude response of the crossoverFilter. The
plot is updated automatically when properties of the object change.

visualize(crossFilt,NFFT) specifies an N-point FFT used to calculate the
magnitude response.

Examples

Visualize Magnitude Response of Crossover Filter

Create an object of the crossoverFilter System object™, and then call visualize to
plot the magnitude response of the filter.

crossFilt = crossoverFilter;
visualize(crossFilt)

Modify the crossover frequency and observe that the plot is updated automatically.

crossFilt.CrossoverFrequencies = 500;

 visualize

3-237

Input Arguments
crossFilt — Crossover filter to visualize
object of crossoverFilter System object

Crossover filter whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

See Also
crossoverFilter

Introduced in R2016a

3 System objects in Audio Toolbox

3-238

graphicEQ
Standards-based graphic equalizer

Description
The graphicEQ System object implements a graphic equalizer that can tune the gain on
individual octave or fractional octave bands. The object filters the data independently
across each input channel over time using the filter specifications. Center and edge
frequencies of the bands are based on the ANSI S1.11-2004 standard.

To equalize an audio signal:

1 Create the graphicEQ object and set its properties.

 graphicEQ

3-239

2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
equalizer = graphicEQ
equalizer = graphicEQ(Name,Value)

Description
equalizer = graphicEQ creates a graphic equalizer with default values.

equalizer = graphicEQ(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: equalizer = graphicEQ('Structure','Parallel','EQOrder','1/3
octave') creates a System object, equalizer, which implements filtering using a
parallel structure and one-third octave filter bandwidth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Gains — Gain of each octave or fractional octave band (dB)
[0 0 0 0 0 0 0 0 0 0] (default) | 10-, 15-, or 30-element row vector

Gain of each octave of fractional octave band in dB, specified as a row vector with a
length determined by the Bandwidth property:

3 System objects in Audio Toolbox

3-240

• '1 octave' –– Specify gains as a 10-element row vector.
• '2/3 octave' –– Specify gains as a 15-element row vector.
• '1/3 octave' –– Specify gains as a 30-element row vector.

Example: equalizer = graphicEQ('Bandwidth','2/3 octave','Gains',
[5,5,5,5,5,0,0,0,0,0,-5,-5,-5,-5,-5]) creates a two-third octave graphic
equalizer with specified gains.

You can tune the gains of your graphic equalizer when the object is locked. However, you
cannot tune the length of the gains when the object is locked.

Tunable: Yes
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | positive even integer

Order of individual equalizer bands, specified as a positive even integer. All equalizer
bands have the same order.

Tunable: No
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/3 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', or '1/3
octave'.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer.
The ISO 266:1997(E) standard specifies corresponding preferred frequencies for labeling
purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981
7943 15849

Edge frequencies 22 45 89 178 355 708 1413 2818
5623 1122 22387

 graphicEQ

3-241

Preferred frequencies 31.5 63 125 250 500 1000 2000
4000 8000 16000

2/3-Octave Bandwidth

Center frequencies 25 40 63 100 158 251 398 631 1000
1585 2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794
1259 1995 3162 5012 7943 12589
19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000
1600 2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200
251 316 398 501 631 794 1000 1259
1585 1995 2512 3162 3981 5012
6310 7943 10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178
224 282 355 447 562 708 891 1122
1413 1778 2239 2818 3548 4467
5623 7079 8913 11220 14125 17783
22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160
200 250 315 400 500 630 800 1000
1250 1600 2000 2500 3150 4000
5000 6300 8000 10000 12500 16000
20000

Tunable: No
Data Types: char | string

Structure — Type of implementation
'Cascade' (default) | 'Parallel'

Type of implementation, specified as 'Cascade' or 'Parallel'. See “Algorithms” on
page 3-247 and “Graphic Equalization” for information about these implementation
structures.

3 System objects in Audio Toolbox

3-242

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = equalizer(audioIn)

Description
audioOut = equalizer(audioIn) performs graphic equalization on the input signal,
audioIn, and returns the equalized signal, audioOut. The type of equalization is
specified by the algorithm and properties of the graphicEQ System object, equalizer.

Input Arguments
audioIn — Audio input to graphic equalizer
matrix

Audio input to the graphic equalizer, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from graphic equalizer
matrix

 graphicEQ

3-243

Audio output from the graphic equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to graphicEQ
createAudioPluginClass Create audio plugin class that implements functionality of

System object
coeffs Get filter coefficients
info Get filter information
visualize Visualize magnitude response of graphic equalizer
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the graphicEQ System object to user-facing parameters:

3 System objects in Audio Toolbox

3-244

Property Range Mapping Unit
Gains [–20, 20] linear dB

Examples

Perform Graphic Equalization

Design and create an object for graphic equalization and then perform equalization on an
audio signal.

Create objects to read from an audio file and write to your audio device. Use the sample
rate of the reader as the sample rate of the writer.

frameLength = 512;
reader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
player = audioDeviceWriter(...
 'SampleRate',reader.SampleRate);

In an audio stream loop, read audio from a file and play the audio through your audio
device.

while ~isDone(reader)
 x = reader();
 player(x);
end
release(reader)
release(player)

Create a one-octave graphic equalizer implemented with a cascade structure. Use the
sample rate of the reader as the sample rate of the equalizer.

equalizer = graphicEQ(...
 'Bandwidth','1 octave', ...
 'Structure','Cascade', ...
 'SampleRate',reader.SampleRate);

Specify to increase the gain on low frequencies and then visualize the equalizer.

 graphicEQ

3-245

equalizer.Gains = [5 5 5 5 0 0 0 0 0 0];
visualize(equalizer)

In an audio stream loop, read audio from a file, apply equalization, and then play the
equalized audio through your audio device.

while ~isDone(reader)
 x = reader();
 y = equalizer(x);
 player(y);
end
release(reader)
release(player)

Tune Graphic EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create a graphicEQ to process
the audio data. Call visualize to plot the frequency response of the graphic equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = graphicEQ('SampleRate',fileReader.SampleRate, ...
 'Gains',[0,10,-10,5,-5,2,-2,1,-1,0]);
visualize(equalizer)

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

3 System objects in Audio Toolbox

3-246

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

Algorithms
The implementation of your graphic equalizer depends on the Structure property. See
“Graphic Equalization” for a discussion of the pros and cons of the parallel and cascade
implementations. Refer to the following sections to understand how these algorithms are
implemented in Audio Toolbox.

Parallel Structure

 graphicEQ

3-247

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter
design method and spaces them on the spectrum according to the ANSI S1.11-2004
standard.

If you set the SampleRate property so that the Nyquist frequency (SampleRate/2) is less
than the final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the
Nyquist frequency.

• The final filter is implemented as a highpass filter designed by the designParamEQ
function.

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and SampleRate properties.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding
element of the Gains property.

3 The branches are summed and the output signal is returned.

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

3 System objects in Audio Toolbox

3-248

Gain Setting

If the EQOrder property is set to 2, then a gain correction is calculated according to [1].
The gain correction is independent of the requested gains. The gain correction is
recomputed during the real-time processing only if the SampleRate property is modified.

If the EQOrder property is not set to 2, no gain correction is applied, and the requested
gains are passed on to the multibandParametricEQ object.

Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the
specified Bandwidth and SampleRate properties.

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic

Equalizer with Accurate Frequency Response Control." Presented at the 139th
Convention of the AES, New York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies.
ISO 266:1997(E). Second Edition. 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 graphicEQ

3-249

See Also
System Objects
multibandParametricEQ

Blocks
Graphic EQ | Parametric EQ Filter

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Graphic Equalization”
“Equalization”

Introduced in R2017b

3 System objects in Audio Toolbox

3-250

info
Get filter information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information
about obj.

Examples

Get Graphic Equalizer Standards-Based Frequencies

Create a graphicEQ System object™. Call info to return a structure containing
standards-based center, edge, and preferred frequencies.

equalizer = graphicEQ;
info(equalizer)

ans = struct with fields:
 CenterFrequencies: [1x10 double]
 EdgeFrequencies: [1x11 double]
 PreferredFrequencies: [31.5000 63 125 250 500 1000 2000 4000 8000 16000]

octaveFilterBank Info

Create a default octaveFilterBank. Call info to return a struct containing information
about the octave filter bank.

 info

3-251

octFiltBank = octaveFilterBank;

infoStruct = info(octFiltBank)

infoStruct =

 struct with fields:

 CenterFrequencies: [1x10 double]
 BandedgeFrequencies: [1x11 double]
 GroupDelays: [1x10 double]

gammatoneFilterBank Info

Create a default gammatoneFilterBank. Call info to return a struct containing
information about the octave filter bank.

gammaFiltBank = gammatoneFilterBank;

infoStruct = info(gammaFiltBank)

infoStruct =

 struct with fields:

 CenterFrequencies: [1x32 double]
 Bandwidths: [1x32 double]
 GroupDelays: [1x32 double]

Input Arguments
obj — Object to get information from
graphicEQ | gammatoneFilterBank | octaveFilterBank

Object to get information from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

3 System objects in Audio Toolbox

3-252

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the input obj.

See Also
System Objects
gammatoneFilterBank | graphicEQ | octaveFilterBank

Introduced in R2017b

 info

3-253

visualize
Visualize magnitude response of graphic equalizer

Syntax
visualize(equalizer)
visualize(equalizer,NFFT)

Description
visualize(equalizer) plots the magnitude response of the graphicEQ object,
equalizer. The plot is updated automatically when properties of the object change.

visualize(equalizer,NFFT) specifies an N-point FFT used to calculate the
magnitude response.

Examples

Visualize Magnitude Response of Graphic Equalizer

Create a default object of the graphicEQ System object™ and then call visualize.

equalizer = graphicEQ;
visualize(equalizer)

Set the gains of the graphic equalizer to new values. The visualization of the magnitude
response updates automatically.

equalizer.Gains = [-1,1,2,3,3,2,-10,5,5,-10];

3 System objects in Audio Toolbox

3-254

Input Arguments
equalizer — Graphic equalizer to visualize
object of graphicEQ System object

Graphic equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

See Also
System Objects
graphicEQ

Introduced in R2017b

 visualize

3-255

loudnessMeter

Standard-compliant loudness measurements

Description
The loudnessMeter System object computes the loudness, loudness range, and true-
peak of an audio signal in accordance with EBU R 128 and ITU-R BS.1770-4 standards.

To implement loudness metering:

1 Create the loudnessMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
loudMtr = loudnessMeter
loudMtr = loudnessMeter(Name,Value)

3 System objects in Audio Toolbox

3-256

Description
loudMtr = loudnessMeter creates a System object, loudMtr, that performs loudness
metering independently across each input channel.

loudMtr = loudnessMeter(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: loudMtr = loudnessMeter('ChannelWeights',[1.2,
0.8],'SampleRate',12000) creates a System object, loudMtr, with channel weights
of 1.2 and 0.8, and a sample rate of 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

ChannelWeights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative
values. The number of elements in the row vector must be equal to or greater than the
number of input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input signal channels as a matrix in this order: [Left, Right,
Center, Left surround, Right surround].

As a best practice, specify the ChannelWeights property in order: [Left, Right, Center,
Left surround, Right surround].

Tunable: Yes
Data Types: single | double

 loudnessMeter

3-257

UseRelativeScale — Use relative scale for loudness measurements
false (default) | true

Use relative scale for loudness measurements, specified as a logical scalar.

• false –– The loudness measurements are absolute and returned in loudness units full
scale (LUFS).

• true –– The loudness measurements are relative to the TargetLoudness value and
returned in loudness units (LU).

Tunable: No
Data Types: logical

TargetLoudness — Target loudness level for relative scale (LUFS)
-23 (default) | real scalar

Target loudness level for relative scale in LUFS, specified as a real scalar.

For example, if the TargetLoudness is –23 LUFS, then a loudness value of –23 LUFS is
reported as 0 LU.

Tunable: Yes

Dependencies

To enable this property, set UseRelativeScale to true.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System objects in Audio Toolbox

3-258

Usage

Syntax
[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn)

Description
[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn) returns
measurement values for momentary and short-term loudness of the input to your loudness
meter, and the true-peak value of the current input frame, audioIn. It also returns the
integrated loudness and loudness range of the input to your loudness meter since the last
time reset was called.

Input Arguments
audioIn — Audio input to loudness meter
matrix

Audio input to the loudness meter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.

Note If you use the default ChannelWeights of the loudnessMeter, as a best
practice, specify the input channels in this order: [Left, Right, Center, Left surround,
Right surround].

Data Types: single | double

Output Arguments
momentary — Momentary loudness (LUFS)
column vector

Momentary loudness in loudness units relative to full scale (LUFS), returned as a column
vector with the same number of rows as audioIn.

 loudnessMeter

3-259

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

shortTerm — Short-term loudness (LUFS)
column vector

Short-term loudness in loudness units relative to full scale (LUFS), returned as a column
vector with the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

integrated — Integrated loudness (LUFS)
column vector

Integrated loudness in loudness units relative to full scale (LUFS), returned as a column
vector with the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the
UseRelativeScale property to true, loudness measurements are returned in loudness
units (LU).
Data Types: single | double

range — Loudness range (LU)
column vector

Loudness range in loudness units (LU), returned as a column vector with the same
number of rows as audioIn.
Data Types: single | double

peak — True-peak loudness (dB-TP)
scalar

True-peak loudness in dB-TP, returned as a column vector with the same number of rows
as audioIn.
Data Types: single | double

3 System objects in Audio Toolbox

3-260

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to loudnessMeter
visualize Open 'EBU Mode' meter display

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Loudness of Audio Signal

Create a dsp.AudioFileReader System object™ to read in an audio file. Create a
loudnesMeter System object. Use the sample rate of the audio file as the sample rate of
the loudnessMeter.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
loudMtr = loudnessMeter('SampleRate',fileReader.SampleRate);

Read in the audio file in an audio stream loop. Use the loudness meter to determine the
momentary, short-term, and integrated loudness of the audio signal. Cache the loudness
measurements for analysis.

momentary = [];
shortTerm = [];
integrated = [];

while ~isDone(fileReader)

 loudnessMeter

3-261

 x = fileReader();
 [m,s,i] = loudMtr(x);
 momentary = [momentary;m];
 shortTerm = [shortTerm;s];
 integrated = [integrated;i];
end

release(fileReader)

Plot the momentary, short-term, and integrated loudness of the audio signal.

t = linspace(0,11,length(momentary));
plot(t,[momentary,shortTerm,integrated])
title('Loudness Measurements')
legend('Momentary','Short-term','Integrated')
xlabel('Time (seconds)')
ylabel('LUFS')

Plot Momentary Loudness and Loudness Range of Audio Stream

Create an audio file reader and an audio device writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a time scope to visualize your audio stream loop.

timeScope = dsp.TimeScope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'LayoutDimensions',[2,1], ...
 'TimeSpan',5, ...
 'BufferLength',5*fs);

% Top subplot of scope
timeScope.Title = 'Momentary Loudness';
timeScope.YLabel = 'LUFS';
timeScope.YLimits = [-40, 0];

% Bottom subplot of scope

3 System objects in Audio Toolbox

3-262

timeScope.ActiveDisplay = 2;
timeScope.Title = 'Loudness Range';
timeScope.YLabel = 'LU';
timeScope.YLimits = [-1, 2];

Create a loudness meter. Use the sample rate of your input file as the sample rate of your
loudness meter. Call visualize to open an 'EBU-mode' visualization for your loudness
meter.

loudMtr = loudnessMeter('SampleRate',fs);
visualize(loudMtr)

In an audio stream loop:

• Read in your audio file.
• Compute the momentary loudness and loudness range.
• Visualize the momentary loudness and loudness range on your time scope.
• Play the audio signal.

The 'EBU-mode' loudness meter visualization updates automatically while it is open. As a
best practice, release your file reader and device writer once the loop is completed.

while ~isDone(fileReader)
 audioIn = fileReader();
 [momentaryLoudness,~,~,LRA] = loudMtr(audioIn);
 timeScope(momentaryLoudness,LRA);

 loudnessMeter

3-263

 deviceWriter(audioIn);
end

release(fileReader)
release(deviceWriter)

3 System objects in Audio Toolbox

3-264

Relative Scale for Loudness Measurements

Create an audio file reader to read in an audio file. Create an audio device writer to write
the audio file to your audio device. Use the sample rate of your file reader as the sample
rate of your device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav',...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a loudness meter with the target loudness set to the default -23 LUFS. Open the
'EBU-mode' loudness meter visualization.

loudMtr = loudnessMeter('UseRelativeScale',true);
visualize(loudMtr)

 loudnessMeter

3-265

Create a time scope to visualize your audio signal and its measured relative momentary
and short-term loudness.

scope = dsp.TimeScope(...
 'NumInputPorts',3, ...
 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',5, ...
 'BufferLength',5*fs, ...
 'Title','Audio Signal, Momentary Loudness, and Short-Term Loudness', ...
 'ChannelNames',{'Audio signal','Momentary loudness','Short-term loudness'}, ...
 'YLimits',[-16,16], ...
 'YLabel','Amplitude / LU', ...
 'ShowLegend',true);

In an audio stream loop, listen to and visualize the audio signal.

while ~isDone(fileReader)
 x = fileReader();
 [momentary,shortTerm] = loudMtr(x);
 scope(x,momentary,shortTerm)
 deviceWriter(x);
end

release(deviceWriter)
release(fileReader)

3 System objects in Audio Toolbox

3-266

 loudnessMeter

3-267

Algorithms
The loudnessMeter System object calculates the momentary loudness, short-term
loudness, integrated loudness, loudness range (LRA), and true-peak value of an audio
signal. You can specify any number of channels and nondefault channel weights used for

3 System objects in Audio Toolbox

3-268

loudness measurements. The loudnessMeter algorithm is described for the general case
of n channels with default channel weights.

Loudness Measurements
The input channels, x, pass through a K-weighted weightingFilter. The K-weighted
filter shapes the frequency spectrum to reflect perceived loudness.

Momentary Loudness and Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. If the required number of samples have not been collected yet, the
loudnessMeter System object returns the last computed values for momentary and
integrated loudness. If enough samples have been collected, then the power (mean
square) of each segment of the K-weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

 loudnessMeter

3-269

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed in LUFS for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your loudnessMeter System object. It is
also used internally to calculate the integrated loudness (steps 3–6).

3 The integrated loudness measurement considers the audio signal since the last reset
of your loudness meter. To calculate integrated loudness, the momentary power is
passed through a gating system. The gate system pauses the measurement during
periods of low sound, such as stretches of silence in a movie.

The momentary power segment is gated using the corresponding momentary
loudness segment calculation:

mPi mP j

j = i mLi ≥ − 70

mPj is cached until your loudnessMeter is reset.
4 The momentary power subset, mPj, passes through a relative threshold gate.

a The relative threshold, Γ, is computed:

3 System objects in Audio Toolbox

3-270

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

b The momentary power subset, mPj, is gated using relative threshold Γ:

mP j mPk

k = j mP j ≥ Γ

The relative threshold is recomputed during each call to your loudnessMeter
object. The cached values of mPj are gated again depending on the updated value of
Γ.

5 The momentary power segments are averaged:

P = 1
k ∑k mPk

6 The integrated loudness is computed in LUFS by passing the mean momentary power,
P, through the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc

Short-Term Loudness and Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the
loudnessMeter System object returns the last computed values for short-term
loudness and loudness range. If enough samples have been collected, then the power
(mean square) of each K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.

 loudnessMeter

3-271

• w is the segment length in samples.
2 The short-term loudness, sL, is computed in LUFS for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your loudnessMeter System object. It is
also used internally to calculate the loudness range (steps 3–5).

3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70

sLj is cached until your loudnessMeter is reset.
4 The short-term loudness subset, sLj passes through a relative threshold gate.

a The gated short-term loudness is converted back to linear and then the mean is
taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j

b The short-term loudness subset, sLj, is gated using the relative threshold:

3 System objects in Audio Toolbox

3-272

sL j sLk

k = j sL j ≥ K

The relative threshold, K, is recomputed during each call to your loudnessMeter
object. The cached values of sLj are gated again depending on the updated value of K.

5 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as
between the 10th and 95th percentiles of the distribution and is returned in loudness
units (LU).

True-Peak
The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75, 1.5) 256
[1.5, 3) 128
[3, 6) 64
[6,12) 32
[12, 24) 16
[24, 48) 8
[48, 96) 4
[96,192) 2
[192, ∞) Not required

 loudnessMeter

3-273

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase
length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to

Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level
of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128
Loudness Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned off.

3 System objects in Audio Toolbox

3-274

See Also
System Objects
octaveFilter | weightingFilter

Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

 loudnessMeter

3-275

visualize
Open 'EBU Mode' meter display

Syntax
visualize(loudMtr)

Description
visualize(loudMtr) opens an 'EBU Mode' loudness meter display. The values of
momentary loudness, short-term loudness, integrated loudness, loudness range, and true-
peak are updated as the simulation progresses. The display also shows the maximum
value of momentary and short-term loudness, and the time since the last call to reset.

Examples

Open an 'EBU Mode' Loudness Meter Display

Create an object of the loudnessMeter System object™, and then call visualize to
open an 'EBU Mode' loudness meter display.

loudMtr = loudnessMeter;
visualize(loudMtr)

3 System objects in Audio Toolbox

3-276

Create an audio file reader System object and specify the audio file to analyze. Create an
audio device writer System object to play the audio to your output device.

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, read the audio from the file and play it to your device. The
loudness meter visualization updates at each call.

while ~isDone(fileReader)
 audioIn = fileReader();
 loudMtr(audioIn);
 deviceWriter(audioIn);
end

 visualize

3-277

Input Arguments
loudMtr — Object of loudnessMeter
object

Object of the loudnessMeter System object.

See Also
Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

3 System objects in Audio Toolbox

3-278

multibandParametricEQ
Multiband parametric equalizer

Description
The multibandParametricEQ System object performs multiband parametric
equalization independently across each channel of input using specified center
frequencies, gains, and quality factors. You can configure the System object with up to 10
bands. You can add low-shelf and high-shelf filters, as well as highpass (low-cut) and
lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Create the multibandParametricEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 multibandParametricEQ

3-279

Creation

Syntax
mPEQ = multibandParametricEQ
mPEQ = multibandParametricEQ(Name,Value)

Description
mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs
multiband parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument or
property Name to the specified Value. Unspecified properties and creation arguments
have default values.
Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

Note The value specified by NumEQBands must be the length of the row vectors
specified by Frequencies, QualityFactors, and PeakGains. During creation of the System
object, the first property you specify locks the value.

Creation Arguments
Creation arguments are properties which are set during creation of the System object and
cannot be modified later. If you do not explicitly set a creation argument value, the
property takes a default value.

NumEQBands — Number of equalizer bands
3 (default) | integer in the range [1, 10]

Number of equalizer bands, specified as an integer in the range [1, 10]. The number of
equalizer bands does not include shelving filters, highpass filters, or lowpass filters.

NumEQBands is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.

3 System objects in Audio Toolbox

3-280

Example: mPEQ = multibandParametricEQ('NumEQBands',5) creates a multiband
parametric equalizer with 5 bands.
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands have
the same order.

EQOrder is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('EQOrder',6) creates a multiband
parametric equalizer with the default 3 bands, all of order 6.
Data Types: single | double

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false –– Do not enable low-shelf filtering in multiband parametric equalizer
implementation.

• true –– Enable low-shelf filtering in multiband parametric equalizer implementation.

HasLowShelfFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true) creates
a default multiband parametric equalizer with low-shelf filtering enabled.
Data Types: logical

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

• false –– Do not enable high-shelf filtering in multiband parametric equalizer
implementation.

 multibandParametricEQ

3-281

• true –– Enable high-shelf filtering in multiband parametric equalizer implementation.

HasHighShelfFilter is set during creation of the System object and cannot be
modified later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true) creates
a default multiband parametric equalizer with high-shelf filtering enabled.
Data Types: logical

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false –– Do not enable lowpass filtering in multiband parametric equalizer
implementation.

• true –– Enable lowpass filtering in multiband parametric equalizer implementation.

HasLowpassFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true) creates a
default multiband parametric equalizer with lowpass filtering enabled.
Data Types: logical

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false –– Do not enable highpass filtering in multiband parametric equalizer
implementation.

• true –– Enable highpass filtering in multiband parametric equalizer implementation.

HasHighpassFilter is set during creation of the System object and cannot be modified
later. If you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true) creates
a default multiband parametric equalizer with highpass filtering enabled.
Data Types: logical

3 System objects in Audio Toolbox

3-282

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– Runs the multiband parametric equalizer at the input sample rate.
• true –– Runs the multiband parametric equalizer at two times the input sample rate.

Oversampling minimizes the frequency-warping effects introduced by the bilinear
transformation.

A halfband interpolator implements oversampling before equalization. A halfband
decimator reduces the sample rate back to the input sampling rate after equalization.

Oversample is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('Oversample',true) creates a default
multiband parametric equalizer with oversampling enabled.
Data Types: logical

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100, 181, 325] (default) | row vector of length NumEQBands

Center frequencies of equalizer bands in Hz, specified as a row vector of length
NumEQBands. The vector consists of real scalars in the range 0 to SampleRate/2.

Tunable: Yes

 multibandParametricEQ

3-283

Data Types: single | double

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

Quality factors of equalizer bands, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range [0.2, 700]. Any values outside the range are
saturated.

Tunable: Yes
Data Types: single | double

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range [–inf, 20]. Values above 20 are saturated.

Tunable: Yes
Data Types: single | double

Low-Shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

Low-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values
outside the range are saturated.

Tunable: Yes

3 System objects in Audio Toolbox

3-284

Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

Low-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values outside
the range are saturated.

Tunable: Yes

Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

High-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values
outside the range are saturated.

Tunable: Yes

Dependencies

To enable this property, set HasHighShelfFilter to true during creation.

 multibandParametricEQ

3-285

Data Types: single | double

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

High-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values outside
the range are saturated.

Tunable: Yes

Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

3 System objects in Audio Toolbox

3-286

Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes

Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48].
Values that are not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

 multibandParametricEQ

3-287

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = mPEQ(audioIn)

Description
audioOut = mPEQ(audioIn) performs multiband parametric equalization on the input
signal, audioIn, and returns the filtered signal, audioOut. The type of equalization is
specified by the algorithm and properties of the multibandParametricEQ System
object, mPEQ.

Input Arguments
audioIn — Audio input to equalizer
matrix

Audio input to the equalizer, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from equalizer
matrix

Audio output from the equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

3 System objects in Audio Toolbox

3-288

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multibandParametricEQ
createAudioPluginClass Create audio plugin class that implements functionality of

System object
visualize Visualize magnitude response of multiband parametric

equalizer
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the multibandParametricEQ System object to user-facing parameters:

Property Range Mapping Unit
Frequencies [20, 20000] log Hz
QualityFactors [0.2, 700] linear none
PeakGains [–50, 20] linear dB
LowShelfCutoff [20, 20000] log Hz

 multibandParametricEQ

3-289

Property Range Mapping Unit
LowShelfSlope [0.1, 5] linear none
LowShelfGain [–12, 12] linear dB
HighShelfCutoff [20, 20000] log Hz
HighShelfSlope [0.1, 5] linear none
HighShelfGain [–12, 12] linear dB
LowpassCutoff [20, 20000] log Hz
LowpassSlope [0, 48] linear dB/octave
HighpassCutoff [20, 20000] log Hz
HighpassSlope [0, 48] linear dB/octave

Examples

Multiband Parametric Equalization

Create dsp.AudioFileReader and audioDeviceWriter System objects™. Use the
sample rate of the reader as the sample rate of the writer. Call setup to reduce the
computational load of initialization in an audio stream loop.

frameLength = 512;

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2));

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...
 'NumEQBands',3, ...
 'Frequencies',[300,1200,5000], ...
 'QualityFactors',[1,1,1], ...
 'PeakGains',[8,-10,7], ...
 'HasHighShelfFilter',true, ...

3 System objects in Audio Toolbox

3-290

 'HighShelfCutoff',14000, ...
 'HighShelfSlope',0.3, ...
 'HighShelfGain',-5, ...
 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ)

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the
effect of the equalizer and visualize the changing magnitude response.

count = 0;
while ~isDone(fileReader)
 originalSignal = fileReader();
 equalizedSignal = mPEQ(originalSignal);
 deviceWriter(equalizedSignal);
 if mod(count,100) == 0
 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;
 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;
 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;
 end
 count = count + 1;
end

release(fileReader)
release(mPEQ)
release(deviceWriter)

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ System object™ to
perform oversampling before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency
approaches the Nyquist rate.

mPEQ = multibandParametricEQ(...
 'NumEQBands',1,...
 'Frequencies',9.5e3,...
 'PeakGains',10);
visualize(mPEQ)

 multibandParametricEQ

3-291

for i = 1:1000
 mPEQ.Frequencies = mPEQ.Frequencies + 8;
end

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band
as its center frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...
 'NumEQBands',1,...
 'Frequencies',9.5e3,...
 'PeakGains',10,...
 'Oversample',true);
visualize(mPEQOversampled)
for i = 1:1000
 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;
end

Warping is reduced.

Tune Multiband Parametric EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a
multibandParametricEQ to process the audio data. Call visualize to plot the
frequency response of the equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = multibandParametricEQ('SampleRate',fileReader.SampleRate, ...
 'PeakGains',[-2,2,4]);
visualize(equalizer)

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

3 System objects in Audio Toolbox

3-292

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

 multibandParametricEQ

3-293

release(deviceWriter)
release(fileReader)
release(equalizer)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Parametric EQ | designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

3 System objects in Audio Toolbox

3-294

visualize
Visualize magnitude response of multiband parametric equalizer

Syntax
visualize(mPEQ)
visualize(mPEQ,NFFT)

Description
visualize(mPEQ) plots the magnitude response of the multibandParametricEQ
object, mPEQ. The plot is updated automatically when properties of the object change.

visualize(mPEQ,NFFT) specifies an N-point FFT used to calculate the magnitude
response.

Examples

Specify a Nondefault Number of FFT Points

Create an object of the multibandParametricEQ System object™, and then call
visualize to plot the magnitude response using a 5096-point FFT.

mPEQ = multibandParametricEQ('PeakGains',[-inf,5,5]);
visualize(mPEQ,5096)

Input Arguments
mPEQ — Multiband parametric equalizer to visualize
object of multibandParametricEQ System object

Multiband parametric equalizer whose magnitude response you want to plot.

 visualize

3-295

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

See Also
multibandParametricEQ

Introduced in R2016a

3 System objects in Audio Toolbox

3-296

compressor
Dynamic range compressor

Description
The compressor System object performs dynamic range compression independently
across each input channel. Dynamic range compression attenuates the volume of loud
sounds that cross a given threshold. It uses specified attack and release times to achieve
a smooth applied gain curve. Properties of the compressor System object specify the
type of dynamic range compression.

To perform dynamic range compression:

1 Create the compressor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 compressor

3-297

Creation

Syntax
dRC = compressor
dRC = compressor(thresholdValue)
dRC = compressor(thresholdValue,ratioValue)
dRC = compressor(___ ,Name,Value)

Description
dRC = compressor creates a System object, dRC, that performs dynamic range
compression independently across each input channel over time.

dRC = compressor(thresholdValue) sets the Threshold property to
thresholdValue.

dRC = compressor(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

dRC = compressor(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates
a System object, dRC, with a 10 ms attack time operating at a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

3 System objects in Audio Toolbox

3-298

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >
Threshold, the compression ratio is defined as R = (x[n] − T)

(y[n] − T) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

 compressor

3-299

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final
value when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range compressor
such that a steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain
property.

3 System objects in Audio Toolbox

3-300

Tunable: No
Data Types: char | string

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the output of
the dynamic range compressor.

Tunable: Yes

Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRC(audioIn)

 compressor

3-301

[audioOut,gain] = dRC(audioIn)

Description
audioOut = dRC(audioIn) performs dynamic range compression on the input signal,
audioIn, and returns the compressed signal, audioOut. The type of dynamic range
compression is specified by the algorithm and properties of the compressor System
object, dRC.

[audioOut,gain] = dRC(audioIn) also returns the applied gain, in dB, at each input
sample.

Input Arguments
audioIn — Audio input to compressor
matrix

Audio input to the compressor, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from compressor
matrix

Audio output from the compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by compressor (dB)
matrix

Gain applied by compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

3 System objects in Audio Toolbox

3-302

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to compressor
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the compressor System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–50, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds

 compressor

3-303

Property Range Mapping Unit
MakeUpGain
(available when you
set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5
dB. Use the sample rate of your audio file reader.

dRC = compressor(-15,7,...
 'KneeWidth',5,...
 'SampleRate',fileReader.SampleRate);

Visualize the compression static characteristic.

visualize(dRC)

Set up the scope to visualize the original audio signal, the compressed audio signal, and
the applied compressor gain.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1,1], ...

3 System objects in Audio Toolbox

3-304

 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title', ...
 ['Original vs. Compressed Audio (top)' ...
 ' and Compressor Gain in dB (bottom)']);
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRC(x);
 deviceWriter(y);
 scope([x(:,1),y(:,1)],g(:,1))
end

release(dRC)
release(deviceWriter)
release(scope)

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of a
limiter, the effect is equivalent to audio clipping. In compressors, the level above an
operational threshold is lowered using a specified compression ratio. Using a compression
ratio results in a smoother processed signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

 compressor

3-305

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)
release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to
read audio from a file and write to your audio output device. To emphasize the effect of
dynamic range control, set the operational threshold of the limiter and compressor to -20
dB.

3 System objects in Audio Toolbox

3-306

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')
for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')
for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')
for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most
pronounced in words beginning with p, d, and g sounds. Plosives can be emphasized by

 compressor

3-307

the recording process and are often displeasurable to hear. In this example, you minimize
the plosives of a speech signal by applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader System object™ and a audioDeviceWriter System
object™ to read an audio signal from a file and write an audio signal to a device. Play the
unprocessed signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Plosives.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter System object to implement the highpass filter design. Create a
crossover filter with one crossover at 250 Hz. The crossover filter enables you to separate
the band of interest for processing. Create a dynamic range compressor to compress the
dynamic range of plosive sounds. To apply no make-up gain, set the MakeUpGainMode to
'Property' and use the default 0 dB MakeUpGain property value. Create a time scope
to visualize the processed and unprocessed audio signal.

[B,A] = designVarSlopeFilter(48,120/(44100/2),'hi');
biquadFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',250, ...
 'CrossoverSlopes',48);

dRCompressor = compressor(...
 'Threshold',-35, ...
 'Ratio',10, ...
 'KneeWidth',20, ...
 'AttackTime',1e-4, ...
 'ReleaseTime',3e-1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

3 System objects in Audio Toolbox

3-308

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',3, ...
 'BufferLength',fileReader.SampleRate*3*2, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioIn = biquadFilter(audioIn,B,A);

 [band1,band2] = crossFilt(audioIn);

 band1compressed = dRCompressor(band1);

 audioOut = band1compressed + band2;

 deviceWriter(audioOut);

 scope([audioIn audioOut]);
end

release(deviceWriter)
release(fileReader)
release(scope)

 compressor

3-309

release(crossFilt)
release(dRCompressor)

Tune Compressor Parameters

Create an dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a compressor to
process the audio data. Call visualize to plot the static characteristic of the
compressor. Create a dsp.TimeScope to visualize the original and processed audio.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while
streaming.

parameterTuner(dRC)

3 System objects in Audio Toolbox

3-310

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the
effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

 compressor

3-311

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

3 System objects in Audio Toolbox

3-312

Algorithms
The compressor System object processes a signal frame by frame and element by
element.

 compressor

3-313

Convert Input Signal to dB
The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer
xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range compressor to attenuate gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

3 System objects in Audio Toolbox

3-314

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .

Gain Smoothing
gc[n] is smoothed using specified attack and release time properties:

gs[n] =
αAgs[n− 1] + (1 − αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1 − αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time
period, specified by the ReleaseTime property. Fs is the input sampling rate, specified
by the SampleRate property.

Calculate and Apply Make-up Gain
If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the
negative of the computed gain for a 0 dB input,

M = −xsc xdB = 0 .

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0
dB. The make-up gain is determined by the Threshold, Ratio, and KneeWidth
properties. It does not depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

 compressor

3-315

gm[n] = gs[n] + M

Calculate and Apply Linear Gain
The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Compressor

System Objects
expander | limiter | noiseGate

3 System objects in Audio Toolbox

3-316

Topics
“Dynamic Range Control”

Introduced in R2016a

 compressor

3-317

expander
Dynamic range expander

Description
The expander System object performs dynamic range expansion independently across
each input channel. Dynamic range expansion attenuates the volume of quiet sounds
below a given threshold. It uses specified attack, release, and hold times to achieve a
smooth applied gain curve. Properties of the expander System object specify the type of
dynamic range expansion.

To perform dynamic range expansion:

1 Create the expander object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3 System objects in Audio Toolbox

3-318

Creation

Syntax
dRE = expander
dRE = expander(thresholdValue)
dRE = expander(thresholdValue,ratioValue)
dRE = expander(___ ,Name,Value)

Description
dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

dRE = expander(thresholdValue) sets the Threshold property to thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to
ratioValue.

dRE = expander(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRE, with a 0.01 second attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

 expander

3-319

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <
thresholdValue, the expansion ratio is defined as R = (y[n] − T)

(x[n] − T) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1 − R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W.

3 System objects in Audio Toolbox

3-320

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final
value when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the operation
threshold.

 expander

3-321

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRE(audioIn)
[audioOut,gain] = dRE(audioIn)

Description
audioOut = dRE(audioIn) performs dynamic range expansion on the input signal,
audioIn, and returns the expanded signal, audioOut. The type of dynamic range
expansion is specified by the algorithm and properties of the expander System object,
dRE.

[audioOut,gain] = dRE(audioIn) also returns the applied gain, in dB, at each input
sample.

3 System objects in Audio Toolbox

3-322

Input Arguments
audioIn — Audio input to expander
matrix

Audio input to the expander, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from expander
matrix

Audio output from the expander, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by expander (dB)
matrix

Gain applied by expander, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to expander
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

 expander

3-323

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the expander System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–140, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...

3 System objects in Audio Toolbox

3-324

 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01
seconds, a release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample
rate of your audio file reader.

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Visualize the expansion static characteristic.

visualize(dRE)

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Expanded Audio');

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 expander

3-325

 y = dRE(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y])
end

release(fileReader)
release(dRE)
release(deviceWriter)
release(scope)

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers
to the s, z, and sh sounds in speech, which can be disproportionately emphasized during
recording. es sounds fall under the category of unvoiced speech with all consonants and
have a higher frequency than voiced speech. In this example, you apply split-band de-
essing to a speech signal by separating the signal into high and low frequencies, applying
an expander to diminish the sibilant frequencies, and then remixing the channels.

Create a dsp.AudioFileReader System object™ and an audioDeviceWriter System
object to read from a sound file and write to an audio device. Listen to the unprocessed
signal. Then release the file reader and device writer.

fileReader = dsp.AudioFileReader(...
 fullfile(matlabroot,'examples','audio','Sibilance.wav'));
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the
expander to the sample rate of the audio file. Create a two-band crossover filter with a
crossover of 3000 Hz. Sibilance is usually found in this range. Set the crossover slope to
12. Plot the frequency response of the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...

3 System objects in Audio Toolbox

3-326

 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

Create a dsp.TimeScope System object to visualize the original and processed audio
signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',44100*8, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 expander

3-327

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)
release(crossFilt)
release(dRExpander)

Tune Expander Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a expander to process
the audio data. Call visualize to plot the static characteristic of the expander. Create
a dsp.TimeScope to visualize the original and processed audio.

frameLength = 1024;
fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);
visualize(dRE)

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Processed Audio (top) and Applied Gain in dB (bottom)');

3 System objects in Audio Toolbox

3-328

scope.ActiveDisplay = 2;
scope.YLimits = [-300,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the expander while streaming.

parameterTuner(dRE)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range expansion.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original and processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range expander and listen to the effect.

 expander

3-329

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRE(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

3 System objects in Audio Toolbox

3-330

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRE)
release(scope)

 expander

3-331

Algorithms
The expander System object processes a signal frame by frame and element by element.

3 System objects in Audio Toolbox

3-332

Convert Input Signal to dB
The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer
xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range expander to attenuate gain that is below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1 − R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T

 expander

3-333

The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .

Gain Smoothing
gc[n] is smoothed using specified attack, release, and hold time properties:

gs[n] =

αAgs[n− 1] + (1 − αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1 − αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time
period, specified by the ReleaseTime property. Fs is the input sampling rate, specified
by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

Calculate and Apply Linear Gain
The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20

The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

3 System objects in Audio Toolbox

3-334

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Expander

System Objects
compressor | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 expander

3-335

limiter
Dynamic range limiter

Description
The limiter System object performs brick-wall dynamic range limiting independently
across each input channel. Dynamic range limiting suppresses the volume of loud sounds
that cross a given threshold. It uses specified attack and release times to achieve a
smooth applied gain curve. Properties of the limiter System object specify the type of
dynamic range limiting.

To perform dynamic range limiting:

1 Create the limiter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3 System objects in Audio Toolbox

3-336

Creation

Syntax
dRL = limiter
dRL = limiter(thresholdValue)
dRL = limiter(___ ,Name,Value)

Description
dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range
limiting independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to thresholdValue.

dRL = limiter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRL, with a 10 ms attack time and a sample rate of 16 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

 limiter

3-337

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value
when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

3 System objects in Audio Toolbox

3-338

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final value
when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range limiter such
that a steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain
property.

Tunable: No
Data Types: char | string

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of the
dynamic range limiter.

Tunable: Yes
Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

 limiter

3-339

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRL(audioIn)
[audioOut,gain] = dRL(audioIn)

Description
audioOut = dRL(audioIn)performs dynamic range limiting on the input signal,
audioIn, and returns the limited signal, audioOut. The type of dynamic range limiting is
specified by the algorithm and properties of the limiter System object, dRL.

[audioOut,gain] = dRL(audioIn)also returns the applied gain, in dB, at each input
sample.

Input Arguments
audioIn — Audio input to limiter
matrix

Audio input to the limiter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from limiter
matrix

Audio output from the limiter, returned as a matrix the same size as audioIn.

3 System objects in Audio Toolbox

3-340

Data Types: single | double

gain — Gain applied by limiter (dB)
matrix

Gain applied by the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to limiter
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the limiter System object to user-facing parameters:

 limiter

3-341

Property Range Mapping Unit
Threshold [–50, 0] linear dB
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain
(available when you
set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a
release time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set
the make-up gain mode to 'Property' but do not specify the MakeUpGain property. Use
the sample rate of your audio file reader.

dRL = limiter(-15, ...
 'AttackTime',0.005, ...
 'ReleaseTime',0.1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the limiter.

3 System objects in Audio Toolbox

3-342

visualize(dRL)

Set up a time scope to visualize the original signal and the limited signal.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'ShowLegend',true, ...
 'Title',['Original vs. Limited Audio (top)' ...
 ' and Limiter Gain in dB (bottom)']);

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRL(x);
 deviceWriter(y);
 x1 = x(:,1);
 y1 = y(:,1);
 g1 = g(:,1);
 scope([x1,y1],g1);
end

release(fileReader)
release(dRL)
release(deviceWriter)
release(scope)

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the
level above an operational threshold is hard limited. In the simplest implementation of a
limiter, the effect is equivalent to audio clipping. In compressors, the level above an
operational threshold is lowered using a specified compression ratio. Using a compression
ratio results in a smoother processed signal.

 limiter

3-343

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the
AttackTime and ReleaseTime properties of both objects to zero. Create an
audioOscillator System object to generate a sinusoid with Frequency set to 5 and
Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a
limiter and a compressor. Increment the amplitude of the original sinusoid to illustrate
the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)
release(dRL)
release(dRC)
release(osc)

3 System objects in Audio Toolbox

3-344

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to
read audio from a file and write to your audio output device. To emphasize the effect of
dynamic range control, set the operational threshold of the limiter and compressor to -20
dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of
dynamic range limiting and dynamic range compression on an audio signal.

numFrames = 300;

fprintf('Now playing original signal...\n')
for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')
for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')
for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)

 limiter

3-345

release(dRC)
release(dRL)

Tune Limiter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create a limiter to process
the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRL = limiter('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the limiter while streaming.

parameterTuner(dRL)

3 System objects in Audio Toolbox

3-346

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range limiting.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the dynamic range limiter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRL(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

 limiter

3-347

release(deviceWriter)
release(fileReader)
release(dRL)

Algorithms
The limiter System object processes a signal frame by frame and element by element.

Convert Input Signal to dB
The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer
xdB[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range limiter to brick-wall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

3 System objects in Audio Toolbox

3-348

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .

Gain Smoothing
gc[n] is smoothed using specified attack and release time:

gs[n] =
αAgs[n− 1] + (1 − αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1 − αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time
period, specified by the ReleaseTime property. Fs is the input sampling rate, specified
by the SampleRate property.

 limiter

3-349

Calculate and Apply Make-up Gain
If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the
negative of the computed gain for a 0 dB input:

M = −xsc xdB = 0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0
dB. The make-up gain is determined by the Threshold and KneeWidth properties. It
does not depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M

Calculate and Apply Linear Gain
The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20 .

The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 System objects in Audio Toolbox

3-350

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Limiter

System Objects
compressor | expander | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 limiter

3-351

noiseGate
Dynamic range gate

Description
The noiseGate System object performs dynamic range gating independently across each
input channel. Dynamic range gating suppresses signals below a given threshold. It uses
specified attack, release, and hold times to achieve a smooth applied gain curve.
Properties of the noiseGate System object specify the type of dynamic range gating.

To perform dynamic range gating:

1 Create the noiseGate object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

3 System objects in Audio Toolbox

3-352

Creation

Syntax
dRG = noiseGate
dRG = noiseGate(thresholdValue)
dRG = noiseGate(___ ,Name,Value)

Description
dRG = noiseGate creates a System object, dRG, that performs dynamic range gating
independently across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to
thresholdValue.

dRG = noiseGate(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates a
System object, dRG, with a 10 ms attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

 noiseGate

3-353

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value
when the input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final
value when the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the operation
threshold.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

3 System objects in Audio Toolbox

3-354

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = dRG(audioIn)
[audioOut,gain] = dRG(audioIn)

Description
audioOut = dRG(audioIn) performs dynamic range gating on the input signal,
audioIn, and returns the gated signal, audioOut. The type of dynamic range gating is
specified by the algorithm and properties of the noiseGate System object, dRG.

[audioOut,gain] = dRG(audioIn) also returns the applied gain, in dB, at each input
sample.

Input Arguments
audioIn — Audio input to noise gate
matrix

Audio input to the noise gate, specified as a matrix. The columns of the matrix are treated
as independent audio channels.
Data Types: single | double

 noiseGate

3-355

Output Arguments
audioOut — Audio output from noise gate
matrix

Audio output from the noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by noise gate (dB)
matrix

Gain applied by noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to noiseGate
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use

3 System objects in Audio Toolbox

3-356

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the noiseGate System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–140, 0] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

ExamplesTune Noise Gate Parameters

Gate Audio Signal
Use dynamic range gating to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

 noiseGate

3-357

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds, a
release time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your
audio file reader.

gate = noiseGate(-25, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Visualize the static characteristic of the gate.

visualize(gate)

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Gated Audio');

Play the processed audio and visualize it on scope.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = gate(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y]);
end

release(fileReader)
release(gate)
release(deviceWriter)
release(scope)

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an
audioDeviceWriter to write audio to your sound card. Create a noiseGate to process
the audio data.

3 System objects in Audio Toolbox

3-358

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRG = noiseGate('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the noiseGate while
streaming.

parameterTuner(dRG)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range gating.
3 Write the frame of audio to your audio device for listening.

 noiseGate

3-359

While streaming, tune parameters of the dynamic range gate and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRG(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRG)

Algorithms
The noiseGate System object processes a signal frame by frame and element by
element.

Convert Input Signal to Magnitude
The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n] .

3 System objects in Audio Toolbox

3-360

Gain Computer
xa[n] passes through the gain computer. The gain computer uses the static characteristic
properties of the dynamic range gate to determine a brick-wall gain for signal below the
threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

.

Tlin is the threshold property converted to a linear domain:

Tlin = 10
TdB 20 .

Gain Smoothing
The computed gain, gc[n], is smoothed using specified attack, release, and hold time
properties:

gs[n] =

αAgs[n− 1] + (1 − αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1 − αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time
period, specified by the ReleaseTime property. Fs is the input sampling rate, specified
by the SampleRate property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is
determined by the HoldTime property.

 noiseGate

3-361

Apply Gain
The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Noise Gate

System Objects
compressor | expander | limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System objects in Audio Toolbox

3-362

octaveFilter

Octave-band and fractional octave-band filter

Description
The octaveFilter System object performs octave-band or fractional octave-band
filtering independently across each input channel. An octave-band is a frequency band
where the highest frequency is twice the lowest frequency. Octave-band and fractional
octave-band filters are commonly used to mimic how humans perceive loudness. Octave
filters are best understood when viewed on a logarithmic scale, which models how the
human ear weights the spectrum.

To perform octave-band or fractional octave-band filtering on your input:

1 Create the octaveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 octaveFilter

3-363

Creation

Syntax
octFilt = octaveFilter
octFilt = octaveFilter(centerFreq)
octFilt = octaveFilter(centerFreq,bw)
octFilt = octaveFilter(___ ,Name,Value)

Description
octFilt = octaveFilter creates a System object, octFilt, that performs octave-
band filtering independently across each input channel.

octFilt = octaveFilter(centerFreq) sets the CenterFrequency property to
centerFreq.

octFilt = octaveFilter(centerFreq,bw) sets the Bandwidth property to bw.

octFilt = octaveFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: octFilt = octaveFilter(1000,'1/3 octave','SampleRate',96000)
creates a System object, octFilt, with a center frequency of 1000 Hz, a 1/3 octave filter
bandwidth, and a sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FilterOrder — Order of octave filter
6 (default) | even integer

3 System objects in Audio Toolbox

3-364

Order of the octave filter, specified as an even integer.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CenterFrequency — Center frequency of octave filter (Hz)
1000 (default) | positive scalar

Center frequency of the octave filter in Hz, specified as a positive scalar.

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be
equal to 1 Hz. Frequencies below this value are quantized to the value that
corresponds to lower band edge equal to 1 Hz.

Tunable: Yes
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6
octave' | '1/12 octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave',
'1/3 octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48
octave'.

Tunable: Yes
Data Types: char | string

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– The octave filter runs at the input sample rate.
• true –– The octave filter runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation. An
FIR halfband interpolator implements oversampling before octave filtering. A halfband

 octaveFilter

3-365

decimator reduces the sample rate back to the input sampling rate after octave
filtering.

Tunable: No
Data Types: logical

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = octFilt(audioIn)

Description
audioOut = octFilt(audioIn) applies octave-band filtering to the input signal,
audioIn, and returns the filtered signal, audioOut. The type of filtering is specified by
the algorithm and properties of the octaveFilter System object, octFilt.

Input Arguments
audioIn — Audio input to octave filter
matrix

Audio input to the octave filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

3 System objects in Audio Toolbox

3-366

Output Arguments
audioOut — Audio output from octave filter
matrix

Audio output from the octave filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilter
createAudioPluginClass Create audio plugin class that implements functionality of

System object
visualize Visualize and validate filter response
isStandardCompliant Verify octave filter design is ANSI S1.11-2004 compliant
getFilter Return biquad filter object with design parameters set
getANSICenterFrequencies Get the list of valid ANSI S1.11-2004 center frequencies
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

 octaveFilter

3-367

step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the octaveFilter System object to user-facing parameters:

Property Range Mapping Units
CenterFrequency [3, 22000] log Hz
Bandwidth '1 octave', '2/3

octave', '1/2
octave', '1/3
octave', '1/6
octave', '1/12
octave', '1/24
octave', or '1/48
octave'

Your MIDI controller
range is discretized
into seven levels,
corresponding to the
seven Bandwidth
choices.

––

Examples

Perform Fractional Octave-Band Filtering

Use the octaveFilter System object™ to design a 1/3 octave-band filter centered at
1000 Hz. Process an audio signal using your octave filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('Filename', ...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame, ...
 'PlayCount',Inf);

Create an octaveFilter System object. Use the sample rate of the reader as the sample
rate of the octave filter.

centerFreq = 1000;
bw = '1/3 octave';
Fs = reader.SampleRate;

octFilt = octaveFilter(centerFreq,bw,'SampleRate',Fs);

3 System objects in Audio Toolbox

3-368

Visualize the filter response and verify that it fits within the class 0 mask of the ANSI
S1.11-2004 standard.

visualize(octFilt,'class 0')

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after octave-band filtering.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

tic;
while toc < 20
 x = reader();
 y = octFilt(x);
 scope([x(:,1),y(:,1)])
end

release(octFilt)
release(scope)
release(reader)

Create Octave-Band Filter Bank

Create an octave-band filter bank that conforms to ANSI S1.11-2004. Pass white noise
through the filter bank and inspect the resulting power in each band.

Create an octave filter with default settings. Visualize the filter design and verify that it
conforms to ANSI S1.11-2004 for class 0.

octFilt = octaveFilter;
visualize(octFilt,'class 0')

 octaveFilter

3-369

Get a vector of valid center frequencies, given the center frequency of octFilt. Create
an octave filter bank using the valid center frequencies.

centerFrequencies = getANSICenterFrequencies(octFilt);
for i = 1:11
 octaveFilterBank{i} = octaveFilter(centerFrequencies(i),'FilterOrder',12);
end

Use getFilter to return biquad filter objects for each filter in your octave filter bank.
Visualize the octave filter bank with a linear frequency scale.

plotter = fvtool(getFilter(octaveFilterBank{1}), ...
 getFilter(octaveFilterBank{2}), ...
 getFilter(octaveFilterBank{3}), ...
 getFilter(octaveFilterBank{4}), ...
 getFilter(octaveFilterBank{5}), ...
 getFilter(octaveFilterBank{6}), ...
 getFilter(octaveFilterBank{7}), ...
 getFilter(octaveFilterBank{8}), ...
 getFilter(octaveFilterBank{9}), ...
 getFilter(octaveFilterBank{10}), ...
 getFilter(octaveFilterBank{11}), ...
 'Fs',octaveFilterBank{1}.SampleRate);

3 System objects in Audio Toolbox

3-370

Visualize the octave filter bank with a logarithmic frequency scale. The logarithmic
frequency scale makes the center frequencies appear evenly distributed.

set(plotter,'FrequencyScale','Log')

 octaveFilter

3-371

Create a white noise signal. By definition, white noise has a flat power spectral density.

whiteNoiseGenerator = dsp.ColoredNoise(0,1024);
whiteNoise = whiteNoiseGenerator();

Pass the white noise signal through the octave-band filter bank.

for i = 1:11
 filteredWhiteNoise(:,i) = octaveFilterBank{i}(whiteNoise);
end

Calculate and plot the power in each octave.

for i = 1:11
 powerPerBand(i) = bandpower(filteredWhiteNoise(:,i));

3 System objects in Audio Toolbox

3-372

end

bar(powerPerBand)
title('Power Distribution of Octave Band Filter Bank')
set(gca,'XTickLabel',{round(centerFrequencies)})
xlabel('Center Frequency of Octave Band Filter (Hz)')
ylabel('Normalized Power')

The band power increases by a factor of approximately two because the octave bandwidth
increases by a factor of two. The power distribution of an octave filter bank mimics how
higher frequencies are perceived louder in white noise. You can use octave filter banks to
weight a spectrum for perceived loudness.

 octaveFilter

3-373

Effect of Center Frequency on Octave-Band Filtering

Process a speech signal using different octave bands from an octave-band filter bank.

Design a 1/2 octave filter with an estimated center frequency of 800 Hz. Use
isStandardCompliant to find the nearest compliant center frequency.

octFilt = octaveFilter(800,'1/2 octave');
[complianceStatus,suggestedCenterFrequency] = isStandardCompliant(octFilt,'class 0')

complianceStatus =

 logical

 0

suggestedCenterFrequency =

 841.3951

Change the center frequency of the octFilt object to the suggested center frequency
returned by isStandardCompliant. Get a list of valid ANSI S1.11-2004 center
frequencies, given your specified octFilt center frequency.

octFilt.CenterFrequency = suggestedCenterFrequency;
Fo = getANSICenterFrequencies(octFilt);

Create an audio file reader and audio device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a scope to visualize the filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'Title','Octave-Band Filtering',...
 'ShowLegend',true,...
 'ChannelNames',{'Original signal','Filtered signal'});

3 System objects in Audio Toolbox

3-374

In an audio stream loop, process the audio signal using your octave-band filter. Vary the
center frequency to hear the effect. As a best practice, release your objects after
processing.

index = 12;
octFilt.CenterFrequency = Fo(index);
count = 1;
while ~isDone(fileReader)
 x = fileReader();
 y = octFilt(x);
 scope([x,y])
 deviceWriter(y);

 if mod(count,100)==0
 octFilt.CenterFrequency = Fo(index);
 index = index+1;
 end
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

 octaveFilter

3-375

Remove Noise from Tone Scale

Remove additive noise from an audio tone scale using an octaveFilter System
object™.

Create audioOscillator and audioDeviceWriter System objects with default
properties. Create an octaveFilter System object with the center frequency set to 100
Hz.

osc = audioOscillator;
deviceWriter = audioDeviceWriter;
octFilt = octaveFilter(100);

3 System objects in Audio Toolbox

3-376

In an audio stream loop, listen to a tone created by your audio oscillator. The tone
contains additive Gaussian noise.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 deviceWriter(x1);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 end
end

Create a spectrum analyzer to view your filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'SpectralAverages',10, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Reset the frequency of your audio oscillator to its default, 100 Hz.

osc.Frequency = 100;

In an audio stream loop, filter the corrupted tone using your octave-band filter. When the
tone changes frequency in the loop, change the center frequency of your octave filter to
match. As a best practice, release your audio device once done.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 x2 = octFilt(x1);
 deviceWriter(x2);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 octFilt.CenterFrequency = octFilt.CenterFrequency*2;
 end
 scope([x1,x2])
end

release(deviceWriter)

 octaveFilter

3-377

Design Compliant High-Frequency Filters

Design a sixth-order 1/3 octave filter with a sample rate of 96 kHz.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','1/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center
frequencies defined by the standard depend on the Bandwidth and SampleRate
properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

Set the center frequency of the octave filter to 19.953 kHz and visualize the response
with a 'class 0' compliance mask.

octFilt.CenterFrequency = centerFrequencies(38);
visualize(octFilt,'class 0')

The red mask on the plot defines the bounds for the magnitude response of the filter. The
magnitude response of this filter goes above the upper bound of the compliance mask
around 6.6 kHz. One way to counter this is to increase the filter order so that the filter's
rolloff is steeper.

To bring the octave filter design into compliance, set the octave filter order to 8.

octFilt.FilterOrder = 8;

Another option to bring the octave filter design into compliance is to set the Overample
property to true. This designs and runs the filter at twice the specified SampleRate to
reduce the effects of the bilinear transformation during the design stage.

octFilt.FilterOrder = 6;
octFilt.Oversample = true;

Design Compliant Low-Frequency Filters

Design a sixth-order 2/3 octave filter with a 96 kHz sample rate.

3 System objects in Audio Toolbox

3-378

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','2/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center
frequencies defined by the standard depend on the Bandwidth and SampleRate
properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

Set the center frequency of the octave filter to ~6 Hz and visualize the response with a
'class 0' compliance mask.

octFilt.CenterFrequency = centerFrequencies(2);
visualize(octFilt,'class 0')

The red mask on the plot defines the bounds for the magnitude response of the filter. The
magnitude response of this filter goes below the lower bound of the compliance mask
between 5.5 and 7.5 Hz.

Low-frequency filters in an octave filter bank have very low normalized center
frequencies, and the filters designed for them have poles that are almost on the unit
circle. To make this filter ANSI compliant, it has to be designed and operated at a lower
sample rate.

To bring the octave filter design into compliance, set the sample rate to 48 kHz.

octFilt.SampleRate = 48e3;

Tune Octave Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a
audioDeviceWriter to write audio to your sound card. Create an octaveFilter to
process the audio data. Call visualize to plot the frequency response of the octave
filter.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

 octaveFilter

3-379

octFilt = octaveFilter('SampleRate',fileReader.SampleRate);
visualize(octFilt)

Call parameterTuner to open a UI to tune parameters of the octaveFilter while
streaming.

parameterTuner(octFilt)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply octave filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the octave filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();

3 System objects in Audio Toolbox

3-380

 audioOut = octFilt(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(octFilt)

Definitions

Band Edge
A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

Center Frequency of Octave Filter
The center frequency of an octave filter is the geometric mean of the lower and upper
band edge frequencies.

Algorithms

Octave Bandwidth to Band Edge Conversion
The octaveFilter System object uses the specified center frequency and filter
bandwidth in octaves to determine the normalized band edges [2].

The object computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

 octaveFilter

3-381

• fc is the normalized center frequency specified by the CenterFrequency property.
• b is the octave bandwidth specified by the Bandwidth property. For example, if

Bandwidth is specified as '1/3 octave', the value of b is 3.
• G is a conversion constant:

G = 103 10 .

Digital Filter Design
The octaveFilter System object implements a higher-order digital bandpass filter
design method specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) ,

where:

Hi(s) = 1

1 − 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

θi = π
2N N − 1 + 2i , i = 1, 2, .., 2N

N is the filter order specified by the FilterOrder property.

3 System objects in Audio Toolbox

3-382

2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of
the bilinear transformation:

s = 1 − cz−1 + z−2

1 − z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb
.

3 The analog prototype is evaluated:

Hi(z) = 1

1 − 2 s
Ω0

cosθi + s2

Ω0
2 s = 1 − 2cz−1 + z−2

1 − z−2

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

 octaveFilter

3-383

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Octave Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio Toolbox

3-384

getANSICenterFrequencies
Get the list of valid ANSI S1.11-2004 center frequencies

Syntax
centerFrequencies = getANSICenterFrequencies(octFilt)

Description
centerFrequencies = getANSICenterFrequencies(octFilt) returns a vector of
valid center frequencies as specified by the ANSI S1.11-2004 standard.

Examples

Get ANSI Center Frequencies

Create an object of the octaveFilter System object™. Call
getANSICenterFrequencies to get a list of valid center frequencies.

octFilt = octaveFilter;
centerFrequencies = getANSICenterFrequencies(octFilt)

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

 getANSICenterFrequencies

3-385

Output Arguments
centerFrequencies — Center frequencies
vector

Center frequencies specified by the ANSI S1.11-2004 standard, returned as a vector.

The range for computing valid center frequencies is 3 Hz to (Fs/2) Hz, where the
SampleRate property of your octave filter defines Fs.
Data Types: single | double

See Also
Blocks
Octave Filter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio Toolbox

3-386

isStandardCompliant
Verify octave filter design is ANSI S1.11-2004 compliant

Syntax
complianceStatus = isStandardCompliant(octFilt,classType)
[complianceStatus,centerFreq] = isStandardCompliant(octFilt,
classType)

Description
complianceStatus = isStandardCompliant(octFilt,classType) returns a
logical scalar, complianceStatus, indicating whether the complianceStatus filter
design is compliant with the ANSI S1.11-2004 standard for classType.

The mask used to determine compliance is centered on the nearest ANSI-compliant
center frequency that ensures the center frequency of the object falls between the upper
and lower band edges of the mask.

[complianceStatus,centerFreq] = isStandardCompliant(octFilt,
classType) also returns the ANSI-compliant center frequency used to create the mask.

Examples

Verify Standard Compliance

Create an object of the octaveFilter System object™. Call isStandardCompliant,
specifying the compliance class type to check as the second argument.

octFilt = octaveFilter;
complianceStatus = isStandardCompliant(octFilt,'class 2')

 isStandardCompliant

3-387

Get ANSI-Compliant Center Frequency

Create an object of the octaveFilter System object. Check the compliance to class 0 status
of your object, and get the center frequency used to create the compliance mask.

octFilt = octaveFilter('CenterFrequency',1266);
[compliant, centerFreq] = isStandardCompliant(octFilt,'class 0')

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

classType — Compliance class type
'class 0' | 'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 0', 'class 1 or 'class 2'.
Data Types: char

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status
indicates whether the octFilt filter design is compliant with the ANSI S1.11-2004
standard for classType.

If your octave filter is noncompliant, try any of the following:

• Set the center frequency to one of the values returned by
getANSICenterFrequencies

• Increase filter order
• Increase sample rate

Data Types: logical

3 System objects in Audio Toolbox

3-388

centerFreq — Center frequency of mask
scalar

Center frequency used to create the compliance mask, returned as a scalar.
Data Types: single | double

See Also
Blocks
Octave Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

 isStandardCompliant

3-389

visualize
Visualize and validate filter response

Syntax
visualize(octFilt)
visualize(octFilt,N)
visualize(___ ,mType)

Description
visualize(octFilt) plots the magnitude response of the octave-band filter, octFilt.
The plot is updated automatically when properties of the object change.

visualize(octFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes. Specify mType as 'class 0', 'class 1', or
'class 2'. The mask attenuation limits are defined in the ANSI S1.11-2004 standard.
The mask center frequency is the ANSI standard center frequency, with band edge
frequencies on either side of the CenterFrequency set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Examples

Plot Octave Filter Magnitude Response

Create an object of the octaveFilter System object™ and then plot the magnitude
response of the filter.

octFilt = octaveFilter;
visualize(octFilt)

3 System objects in Audio Toolbox

3-390

Specify Number of Frequency Bins

Create an object of the octaveFilter System object™. Plot a 5096-point frequency
representation.

octFilt = octaveFilter;
visualize(octFilt,5096)

Visualize Standard-Compliance Mask

Create an object of the octaveFilter System object™. Visualize the class 1 compliance
of the filter design.

octFilt = octaveFilter;
visualize(octFilt,'class 1')

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar.
The default is 2048.
Data Types: single | double

mType — Type of mask
'class 0' | 'class 1' | 'class 2'

Type of mask, specified as 'class 0', 'class 1, or 'class 2'.

 visualize

3-391

The mask attenuation limits are defined in the ANSI S1.11-2004 standard. The mask
center frequency is the ANSI standard center frequency, with band edge frequencies on
either side of the CenterFrequency set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Data Types: char

See Also

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System objects in Audio Toolbox

3-392

reverberator

Add reverberation to audio signal

Description
The reverberator System object adds reverberation to mono or stereo audio signals.

To add reverberation to your input:

1 Create the reverberator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
reverb = reverberator
reverb = reverberator(Name,Value)

 reverberator

3-393

Description
reverb = reverberator creates a System object, reverb, that adds artificial
reverberation to an audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates a
System object, reverb, with a 0.5 second pre-delay and a wet-to-dry mix ratio of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

Pre-delay for reverberation in seconds, specified as a real scalar in the range [0, 1].

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of PreDelay is proportional to the size of the room being modeled.

Tunable: Yes
Data Types: single | double

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to
SampleRate

2 .

3 System objects in Audio Toolbox

3-394

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes
Data Types: single | double

Diffusion — Density of reverb tail
0.5 (default) | real scalar

Density of reverb tail, specified as a real positive scalar in the range [0, 1].

Diffusion is proportional to the rate at which the reverb tail builds in density.
Increasing Diffusion pushes the reflections closer together, thickening the sound.
Reducing Diffusion creates more discrete echoes.

Tunable: Yes
Data Types: single | double

DecayFactor — Decay factor of reverb tail
0.5 (default) | real scalar

Decay factor of reverb tail, specified as a real positive scalar in the range [0, 1].

DecayFactor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes
Data Types: single | double

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range [0, 1].

HighFrequencyDamping is proportional to the attenuation of high frequencies in the
reverberation output. Setting HighFrequencyDamping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

Tunable: Yes

 reverberator

3-395

Data Types: single | double

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range [0, 1].

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your
reverberator System object outputs.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

Syntax
audioOut = reverb(audioIn)

3 System objects in Audio Toolbox

3-396

Description
audioOut = reverb(audioIn) adds reverberation to the input signal, audioIn, and
returns the mixed signal, audioOut. The type of reverberation is specified by the
algorithm and properties of the reverberator System object, reverb.

Input Arguments
audioIn — Audio input to reverberator
column vector | N-by-2 matrix

Audio input to the reverberator, specified as a column vector or two-column matrix. The
columns of the matrix are treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from reverberator
N-by-2 matrix (default)

Audio output from the reverberator, returned as a two-column matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to reverberator
createAudioPluginClass Create audio plugin class that implements functionality of

System object

 reverberator

3-397

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the compressor System object to user-facing parameters:

Property Range Mapping Unit
PreDelay [0, 1] linear s
HighCutFrequency [20, 20000] log Hz
Diffusion [0, 1] linear none
DecayFactor [0, 1] linear none
HighFrequencyDam
ping

[0, 1] linear none

WetDryMix [0, 1] linear none

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal
read from a file.

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the
sample rate of the reader as the sample rate of the writer.

3 System objects in Audio Toolbox

3-398

fileReader = dsp.AudioFileReader(...
 'FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

tic
while toc < 10
 audio = fileReader();
 deviceWriter(audio);
end
release(fileReader)

Construct a reverberator System object with default settings.

reverb = reverberator

Construct a time scope to visualize the original audio signal and the audio signal with
added artificial reverberation.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',10, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1,1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Audio with Reverberation vs. Original');

Play the audio signal with artificial reverberation. Visualize the audio with reverberation
and the original audio.

while ~isDone(fileReader)
 audio = fileReader();
 audioWithReverb = reverb(audio);
 deviceWriter(audioWithReverb);
 scope([audioWithReverb(:,1),audio(:,1)])
end

release(fileReader)
release(deviceWriter)

 reverberator

3-399

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono
A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning
A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the PreDelay property
determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1 − α
1 − αz−1 ,

3 System objects in Audio Toolbox

3-400

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the HighCutFrequency property.
• fs is the sampling frequency specified by the SampleRate property.

Decorrelation
The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank
The signal is fed into the tank, where it circulates to simulate the decay of a reverberation
tail.

 reverberator

3-401

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1 − βz−k

• β is the coefficient specified by the Diffusion property.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude =

(8/29761) * SampleRate. To account for fractional delay resulting from the
modulating k, allpass interpolation is used [2].

3 System objects in Audio Toolbox

3-402

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1 − φ
1 − φz−1

• φ is the coefficient specified by the HighFrequencyDamping property.
4 The signal is multiplied by a gain specified by the DecayFactor property. The signal

then passes through an allpass filter:

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion property.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix
The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1 − κ xR[n] + κx3R[n] ,

yL[n] = 1 − κ xL[n] + κx3L[n] ,

where the WetDryMix property determines κ.

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the

Audio Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

 reverberator

3-403

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Reverberator

Introduced in R2016a

3 System objects in Audio Toolbox

3-404

wavetableSynthesizer
Generate periodic signal from single-cycle waveforms

Description
The wavetableSynthesizer System object generates a periodic signal with tunable
properties. The periodic signal is defined by a single-cycle waveform cached as the
Wavetable property of your wavetableSynthesizer object.

To generate a periodic signal:

1 Create the wavetableSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
waveSynth = wavetableSynthesizer
waveSynth = wavetableSynthesizer(wavetableValue)

 wavetableSynthesizer

3-405

waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue)
waveSynth = wavetableSynthesizer(___ ,Name,Value)

Description
waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable
property to wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue) sets
the Frequency property to frequencyValue.

waveSynth = wavetableSynthesizer(___ ,Name,Value) sets each property Name
to the specified Value. Unspecified properties have default values.
Example: waveSynth =
wavetableSynthesizer('Amplitude',2,'DCOffset',2.5) creates a System
object, waveSynth, that generates the default sine waveform with an amplitude of 2 and
a DC offset of 2.5.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic
wave.

3 System objects in Audio Toolbox

3-406

This property is semi-tunable. You can tune the values of the wavetable when the object is
locked. However, you cannot tune the length of the wavetable when the object is locked.

Tunable: Yes
Data Types: single | double

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output,
before DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

Normalized phase offset of generated signal, specified as a real scalar with values in the
range [0, 1]. The range is a normalized 2π radians interval.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

Tunable: Yes

 wavetableSynthesizer

3-407

Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your wavetableSynthesizer object
outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

Tunable: Yes

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

Tunable: No
Data Types: char | string

Usage

Note For versions earlier than R2016b, use the step function to run the System object™
algorithm. The arguments to step are the object you created, followed by the arguments
shown in this section.

For example, y = step(obj,x) and y = obj(x) perform equivalent operations.

3 System objects in Audio Toolbox

3-408

Syntax
waveform = waveSynth()

Description
waveform = waveSynth() generates a periodic signal, waveform. The type of signal is
specified by the algorithm and properties of the wavetableSynthesizer System object,
waveSynth.

Output Arguments
waveform — Waveform output from wavetable synthesizer
column vector (default)

Waveform output from the wavetable synthesizer, returned as a column vector with length
specified by the SamplesPerFrame property and data type specified by the
OutputDataType property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wavetableSynthesizer
createAudioPluginClass Create audio plugin class that implements functionality of

System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI

controller
disconnectMIDI Disconnect MIDI controls from audio object

 wavetableSynthesizer

3-409

getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties
of the wavetableSynthesizer System object to user-facing parameters:

Property Range Mapping Unit
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear none
DCOffset [–10, 10] linear none

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:0.1:1;
singleCycleWave = ones(100,1) * values;
singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave)
xlabel('Index')
ylabel('Amplitude')

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the
single-cycle waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

Create a time scope to visualize the staircase wave generated by waveSynth.

3 System objects in Audio Toolbox

3-410

scope = dsp.TimeScope(...
 'SampleRate',waveSynth.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Staircase Wave');

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your
staircase wave in 10 Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 staircaseWave = waveSynth();
 scope(staircaseWave)
 if mod(counter,1000)==0
 waveSynth.Frequency = waveSynth.Frequency + 10;
 end
end

Manipulate Audio Samples Using Wavetable Synthesizer

Sample an audio file and save it to the Wavetable property of a
wavetableSynthesizer System object™. Use the wavetable synthesizer to manipulate
your audio sample.

Read in an entire audio file. Clip out an interesting sound from the audio and then play it.

[audio,fs] = audioread('MainStreetOne-24-96-stereo-63secs.wav');

engine = audio(5.35e6:5.45e6);
sound(engine,fs)

Create a wavetable synthesizer using your audio clip. The duration of the engine audio
clip is numel(engine)/fs seconds. In the wavetableSynthesizer, set the
Frequency property to 1/(clip duration). The generated signal now plays back at the
same rate it was recorded at.

duration = numel(engine)/fs;
waveSynth = wavetableSynthesizer('Wavetable',engine,'SampleRate',fs, ...
 'Frequency',1/duration);

 wavetableSynthesizer

3-411

Create an audioDeviceWriter to write to your audio device.

deviceWriter = audioDeviceWriter('SampleRate',fs);

In a loop, play the wavetable synthesizer to your device. After three seconds, begin
increasing the frequency of the wavetable synthesizer. After six seconds, begin decreasing
the frequency of the wavetable synthesizer.

timeElapsed = 0;
while timeElapsed < 9
 audioWave = waveSynth();
 deviceWriter(audioWave);

 if (timeElapsed > 3) && (timeElapsed < 6)
 waveSynth.Frequency = waveSynth.Frequency + 0.001;
 elseif timeElapsed > 6
 waveSynth.Frequency = waveSynth.Frequency - 0.002;
 end

 timeElapsed = timeElapsed + waveSynth.SamplesPerFrame*(1/fs);
end

Modify Wavetable While Stream Processing

Modify the Wavetable property of a wavetableSynthesizer System object™ while
stream processing. Visualize the wavetable and play the resulting audio.

Create a single-cycle waveform for the wavetableSynthesizer to index into. Create a
wavetable synthesizer object.

t = 0:0.001:1;
exponent = 5;
waveTable = [t.^exponent,fliplr(t.^exponent)] - 0.5;

waveSynth = wavetableSynthesizer('Wavetable',waveTable);

Create a dsp.ArrayPlot object to plot the wavetable as it is modified over time. Create
an audioDeviceWriter object to listen to the signal output by your wavetable
synthesizer.

arrayPlotter = dsp.ArrayPlot('YLimits',[-1,1],'PlotType','Line');
deviceWriter = audioDeviceWriter;

3 System objects in Audio Toolbox

3-412

In an audio stream loop, incrementally modify the Wavetable property of the wavetable
synthesizer and plot it. Call the synthesizer to output a waveform and play the waveform
to your audio device.

tic
while toc < 10
 exponent = exponent - 0.01;
 waveSynth.Wavetable = [t.^abs(exponent),fliplr(t.^abs(exponent))] - 0.5;

 arrayPlotter(waveSynth.Wavetable')

 deviceWriter(waveSynth());
end

release(deviceWriter)

Tune Wavetable Synthesizer Parameters

Create a wavetableSynthesizer to generate a waveform. Create a dsp.TimeScope to
visualize the waveform. Create an audioDeviceWriter to write audio to your sound
card.

fs = 44.1e3;
wvSynth = wavetableSynthesizer('SampleRate',44.1e3);

scope = dsp.TimeScope(...
 'SampleRate',wvSynth.SampleRate, ...
 'TimeSpan',1, ...
 'YLimits',[-2,2], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true);

deviceWriter = audioDeviceWriter('SampleRate',wvSynth.SampleRate);

Call parameterTuner to open a UI to tune parameters of the wavetable synthesizer
while streaming.

parameterTuner(wvSynth)

 wavetableSynthesizer

3-413

In an audio stream loop:

1 Call the wavetable synthesizer without arguments to output one frame of data.
2 Visualize the data using the time scope.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the wavetable synthesizer and listen to the effect.

duration = 15;
numIterations = round(wvSynth.SampleRate*duration/wvSynth.SamplesPerFrame);
for i = 1:numIterations
 audioOut = wvSynth();
 scope(audioOut)
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

3 System objects in Audio Toolbox

3-414

As a best practice, release your objects once done.

release(deviceWriter)
release(wvSynth)
release(scope)

 wavetableSynthesizer

3-415

Algorithms
The wavetableSynthesizer System object synthesizes periodic signals using a cached
single-cycle waveform, specified waveform properties, and phase memory.

3 System objects in Audio Toolbox

3-416

Compute Increment
Compute the increment step size:

Δ = Frequency
SampleRate × N ,

where N is the number of elements in your wavetable.

Compute Wavetable Index
Compute Wavetable index,

i[n] =
i[n− 1] + Δ

i[n− 1] + Δ− N
i[n− 1] < N
i[n− 1] ≥ N

,

for 2 ≤ n ≤ SamplesPerFrame. The PhaseOffset property determines i[n=1].

Linear Interpolation
Index into the Wavetable and perform linear interpolation:

w =
Wavetable[1] −Wavetable[iL] × ε + Wavetable[iL]
Wavetable[iH] − Wavetable[iL] × ε + Wavetable[iL]

iH > N
iH ≤ N

.

 wavetableSynthesizer

3-417

• iL = floor(i[n] + 1)
• iH = iL + 1
• ε = i− floor(i)

Apply Amplitude and DC Offset
Multiply by Amplitude and add DCOffset.

waveform = w × Amplitude + DCOffset

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
System Objects
audioOscillator

Introduced in R2016a

3 System objects in Audio Toolbox

3-418

weightingFilter
Frequency-weighted filter

Description
The weightingFilter System object performs frequency-weighted filtering
independently across each input channel.

To perform frequency-weighted filtering:

1 Create the weightingFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
weightFilt = weightingFilter

 weightingFilter

3-419

weightFilt = weightingFilter(weightType)
weightFilt = weightingFilter(weightType,Fs)
weightFilt = weightingFilter(___ ,Name,Value)

Description
weightFilt = weightingFilter creates a System object, weightFilt, that
performs frequency-weighted filtering independently across each input channel.

weightFilt = weightingFilter(weightType) sets the Method property to
weightType.

weightFilt = weightingFilter(weightType,Fs) sets the SampleRate property to
Fs.

weightFilt = weightingFilter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: weightFilt = weightingFilter('C-
weighting','SampleRate',96000) creates a C-weighting filter with a sample rate of
96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

Method — Type of weighting
'A-weighting' (default) | 'C-weighting' | 'K-weighting'

Type of weighting, specified as 'A-weighting', 'C-weighting', or 'K-weighting'.
See “Algorithms” on page 3-427 for more information.

Tunable: No

3 System objects in Audio Toolbox

3-420

Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = weightFilt(audioIn)

Description
audioOut = weightFilt(audioIn) applies frequency-weighted filtering to the input
signal, audioIn, and returns the filtered signal, audioOut. The type of filtering is
specified by the algorithm and properties of the weightingFilter System object,
weightFilt.

Input Arguments
audioIn — Audio input to weighting filter
matrix

Audio input to the weighting filter, specified as a matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments
audioOut — Audio output from weighting filter
matrix

 weightingFilter

3-421

Audio output from the weighting filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to weightingFilter
visualize Visualize and validate filter response
getFilter Return biquad filter object with design parameters set
createAudioPluginClass Create audio plugin class that implements functionality of

System object
isStandardCompliant Verify filter design is IEC 61672-1:2002 compliant

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Validate Filter Compliance

Check the compliance status of filter designs and visualize them.

Create an A-weighting filter with a 22.5 kHz sample rate. Verify that the filter is standard
compliant and visualize the filter design.

aWeight = weightingFilter('A-weighting','SampleRate',22500);
complianceStatus = isStandardCompliant(aWeight,'class 1')
visualize(aWeight,'class 1')

3 System objects in Audio Toolbox

3-422

Change your A-weighting filter sample rate to 44.1 kHz. Verify that the filter is standard
compliant and visualize the filter design.

aWeight.SampleRate = 44100;
complianceStatus = isStandardCompliant(aWeight,'class 1')
visualize(aWeight,'class 1')

Perform A-Weighted Filtering

Use the weightingFilter System object™ to design an A-weighted filter, and then
process an audio signal using your frequency-weighted filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('Filename', ...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame, ...
 'PlayCount',Inf);

Create a weightingFilter System object. Use the sample rate of the reader as the
sample rate of the weighting filter.

Fs = reader.SampleRate;
weightFilt = weightingFilter('A-weighting',Fs);

Visualize the filter response and verify that it fits within the class 1 mask of the IEC
61672-1:2002 standard.

visualize(weightFilt,'class 1')

Create a spectrum analyzer to visualize the original audio signal and the audio signal
after frequency-weighted filtering.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','A-Weighted Filtering', ...

 weightingFilter

3-423

 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the
original audio. As a best practice, release the System objects when complete.

tic
while toc < 20
 x = reader();
 y = weightFilt(x);
 scope([x(:,1),y(:,1)])
end

release(weightFilt)
release(scope)
release(reader)

Compare Weighting Types

Compare the A-weighted, C-weighted, and K-weighted filtering of an engine sound.

Create an A-weighting filter, a C-weighting filter, and a K-weighting filter. Visualize the
filters for analysis and comparison.

wF{1} = weightingFilter;
visualize(wF{1})

wF{2} = weightingFilter('C-weighting');
visualize(wF{2})

wF{3} = weightingFilter('K-weighting');
visualize(wF{3})

Create a dsp.AudioFileReader and specify a sound file. Create an
audioDeviceWriter with default properties. In an audio stream loop, play the white
noise, and then listen to it filtered through the A-weighted, C-weighted, and K-weighted
filters, successively.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

fprintf('No filtering...')

3 System objects in Audio Toolbox

3-424

for i = 1:400
 x = fileReader();
 if i==100
 index = 1;
 fprintf('A-weighted filtering...')
 elseif i==200
 index = 2;
 fprintf('C-weighted filtering...')
 elseif i==300
 index = 3;
 fprintf('K-weighted filtering...\n')
 end
 if i>99
 y = wF{index}(x);
 else
 y = x;
 end
 deviceWriter(y);
end

release(deviceWriter)
release(fileReader)

No filtering...A-weighted filtering...C-weighted filtering...K-weighted filtering...

Use Weighting Filter Design with Biquad Filter

The weightingFilter object uses second-order sections (SOS) for filtering. To extract
the weighting filter design, use getFilter to return a dsp.BiquadFilter object with
the SOSMatrix and ScaleValues properties set.

Use weightingFilter to create C-weighted and A-weighted filter objects. Use
getFilter to return corresponding dsp.BiquadFilter objects.

cFilt = weightingFilter('C-weighting');
aFilt = weightingFilter('A-weighting');
cSOSFilter = getFilter(cFilt);
aSOSFilter = getFilter(aFilt);

Create an audio file reader and audio device writer for audio input/output. Use the
sample rate of your reader as the sample rate of your writer.

 weightingFilter

3-425

fileReader = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, play the unfiltered signal. Release your file reader so that the
next time you call it, it reads from the beginning of the file.

tic
while toc<8
 x = fileReader();
 deviceWriter(x);
end
release(fileReader)

Play the signal processed by the A-weighted filter. Then play the signal processed by the
C-weighted filter. Cache the power in each frame of the original and filtered signals for
analysis. As a best practice, release your file reader and device writer once complete.

y = [];
count = 1;
tic
while ~isDone(fileReader)
 x = fileReader();
 aFiltered = aSOSFilter(x);
 cFiltered = cSOSFilter(x);
 if toc>8
 deviceWriter(cFiltered);
 else
 deviceWriter(aFiltered);
 end
 xPower(count) = var(x);
 aPower(count) = var(aFiltered);
 cPower(count) = var(cFiltered);
 y = [y;x];
 count = count+1;
end

release(fileReader)
release(deviceWriter)

Plot the power of the original signal, the A-weighted signal, and the C-weighted signal
over time.

subplot(2,1,1)
 spectrogram(y,512,256,4096,fileReader.SampleRate,'yaxis')
 title('Original Signal')

3 System objects in Audio Toolbox

3-426

subplot(2,1,2)
 t = linspace(0,16.3468,count-1);
 plot(t,xPower,'r',t,aPower,'b',t,cPower,'g')
 legend('Original Signal','A-Weighted','C-Weighted')
 xlabel('Time (s)')
 ylabel('Power')

Algorithms

A-Weighting
The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements of
noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-
induced deafness. The ISO and ICOA standards mandate A-weighting for all civil aircraft
noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
Toolbox converts the specified poles and zeros to the digital domain using a bilinear
transform:

 weightingFilter

3-427

C-Weighting
The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8
kHz. C-curves are used in sound level meters for sounds that are louder than those
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
Toolbox converts the specified poles and zeros to the digital domain using a bilinear
transform:

K-Weighting
The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

3 System objects in Audio Toolbox

3-428

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002–2005.

 weightingFilter

3-429

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and
Evaluation of Autonomous Multi-track Fader Control." Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Blocks
Weighting Filter

System Objects
dsp.BiquadFilter | multibandParametricEQ | octaveFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System objects in Audio Toolbox

3-430

isStandardCompliant
Verify filter design is IEC 61672-1:2002 compliant

Syntax
complianceStatus = isStandardCompliant(weightFilt,classType)
complianceStatus = isStandardCompliant(___ ,freqRange)

Description
complianceStatus = isStandardCompliant(weightFilt,classType) returns a
logical scalar, complianceStatus, indicating whether the weightFilt filter design is
compliant with the minimum and maximum attenuation specifications for the classType
design specified in IEC 61672-1:2002. You can check compliance for A-weighting and C-
weighting filters only.

complianceStatus = isStandardCompliant(___ ,freqRange) specifies the range
of frequencies checked for compliance.

Examples

Verify Class 1 Standard Compliance

Create an object of the weightingFilter System object™. Call
isStandardCompliant, specifying the compliance class type to check as the second
argument.

weightFilt = weightingFilter;
complianceStatus = isStandardCompliant(weightFilt,'class 1')

 isStandardCompliant

3-431

Specify Frequency Range Checked for Compliance

Create an object of the weightingFilter System object™. Check the 'class 2'
compliance status of the filter design over a specified frequency range.

weightFilt = weightingFilter;
isStandardCompliant(weightFilt,'class 2',[120,2000])

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

classType — Compliance class type
'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 1 or 'class 2'.
Data Types: char

freqRange — Frequency range checked for compliance (Hz)
[minFreq,maxFreq] | two-element vector of increasing values

Specify the frequency range, in Hz, checked for compliance as a two-element vector of
increasing values: [minFreq,maxFreq].
Data Types: single | double

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status
indicates whether the weightFilt filter design is compliant with the minimum and
maximum attenuation specifications for the class type design specified by IEC
61672-1:2002 standard. Compliance can only be checked for A-weighting and C-weighting
filters.

3 System objects in Audio Toolbox

3-432

Data Types: logical

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates.

See Also

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

 isStandardCompliant

3-433

visualize
Visualize and validate filter response

Syntax
visualize(weightFilt)
visualize(weightFilt,N)
visualize(___ ,mType)

Description
visualize(weightFilt) plots the magnitude response of the frequency-weighted
filter, weightFilt. The plot is updated automatically when properties of the object
change.

visualize(weightFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType,
using either of the previous syntaxes.

Examples

Plot Weighting Filter Magnitude Response

Create an object of the weightingFilter System object™ and then plot the magnitude
response of the filter.

weightFilt = weightingFilter;
visualize(weightFilt)

3 System objects in Audio Toolbox

3-434

Specify Number of Frequency Bins in FFT Calculation

Create an object of the octaveFilter System object™. Plot a 1024-point frequency
representation.

weightFilt = weightingFilter;
visualize(weightFilt,1024)

Visualize Class 2 Standard-Compliance Mask

Create an object of the weightFilt System object™. Visualize the class 2 compliance of
the filter design.

weightFilt = weightingFilter;
visualize(weightFilt,'class 2')

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar.
The default is 2048.
Data Types: single | double

mType — Type of mask
'class 1' (default) | 'class 2'

Type of mask, specified as 'class 1' or 'class 2'.

The mask attenuation limits are defined in the IEC 61672-1:2002 standard. The mask is
defined for A-weighting and C-weighting filters only.

 visualize

3-435

• If the mask is green, the design is compliant with the IEC 61672-1:2002 standard.
• If the mask is red, the design breaks compliance.

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for
designing the A-weighted and C-weighted filters. The pole-zero values are based on
analog filters, so the design can break compliance for lower sample rates.

Data Types: char

See Also

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System objects in Audio Toolbox

3-436

Classes in Audio Toolbox

4

transform
Transform audio datastore

Syntax
transformDatastore = transform(ADS,@fcn)
transformDatastore = transform(ADS,@fcn,Name,Value)

Description
transformDatastore = transform(ADS,@fcn) creates a new datastore that
transforms output from the read function.

transformDatastore = transform(ADS,@fcn,Name,Value) specifies options using
one or more Name,Value pair arguments.

Examples

Output Mono Audio from Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Call transform to create a new datastore that mixes multichannel signals to mono.

ADSnew = transform(ADS,@(x)mean(x,2));

Read from the new datastore and confirm that it only outputs mono signals.

while hasdata(ADSnew)
 audio = read(ADSnew);

4 Classes in Audio Toolbox

4-2

 fprintf('Number of channels = %d\n',size(audio,2))
end

Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1

Clip Audio to Five Seconds

The audio samples included with Audio Toolbox™ have varying durations. Use the
transform function to customize the read function so that it outputs a random five
second segment of the audio samples.

Specify the file path to the audio samples included with Audio Toolbox. Create an audio
datastore that points to the specified folder.

 transform

4-3

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, extractSegment, to take as input the output of the read function.
Make extractSegment extract five seconds worth of data from the audio signal.

%--
function [dataOut,info] = extractSegment(audioIn,info)
 [N,numChan] = size(audioIn);
 newN = round(info.SampleRate*5);
 if newN > N % signal length < 5 seconds
 numPad = newN - N + 1;
 dataOut = [audioIn;zeros(numPad,numChan,'like',audioIn)];
 elseif newN < N % signal length > 5 seconds
 start = randi(N - newN + 1);
 dataOut = audioIn(start:start+newN-1,:);
 else % signal length == 5 seconds
 dataOut = audioIn;
 end
end
%--

Call transform to create a TransformedDatastore with Transforms set to
extractSegment.

ADSnew = transform(ADS,@extractSegment,'IncludeInfo',true)

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 Transforms: {@extractSegment}
 IncludeInfo: 1

Read the first three audio files and verify that the outputs are five second segments.

for i = 1:3
 [audio,info] = read(ADSnew);
 fprintf('Duration = %d seconds\n',size(audio,1)/info.SampleRate)
end

4 Classes in Audio Toolbox

4-4

Duration = 5 seconds
Duration = 5 seconds
Duration = 5 seconds

Output Mel Spectrogram

Use transform to create an audio datastore that returns a mel spectrogram
representation from the read function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, extractMelSpectrogramSegment, that transforms the audio data
from a time-domain representation to a log mel spectrogram. Add the additional outputs
from the melSpectrogram function to the info struct output from read.

function [dataOut,infoOut] = extractMelSpectrogram(audioIn,info)

 [S,F,T] = melSpectrogram(audioIn,info.SampleRate);

 dataOut = 10*log10(S+eps);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call transform to create a TransformedDatastore with Transforms set to
extractMelSpectrogram.

ADSnew = transform(ADS,@extractMelSpectrogram,'IncludeInfo',true)

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 Transforms: {@extractMelSpectrogram}

 transform

4-5

 IncludeInfo: 1

Read the first three audio files and plot the log mel spectrograms. If there are multiple
channels, plot only the first channel.

for i = 1:3
 [melSpec,info] = read(ADSnew);

 figure(i)
 surf(info.TimeInstants,info.CenterFrequencies,melSpec(:,:,1),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 [~,name] = fileparts(info.FileName);
 title(name)
 axis([0 info.TimeInstants(end) info.CenterFrequencies(1) info.CenterFrequencies(end)])
 view([0,90])
end

4 Classes in Audio Toolbox

4-6

 transform

4-7

4 Classes in Audio Toolbox

4-8

Output Spectral Shape Features

Use transform to create an audio datastore that returns feature vectors.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, extractFeatureVector, that transforms the audio data from a time-
domain representation to feature vectors.

 transform

4-9

function [dataOut,info] = extractFeatureVector(audioIn,info)

 % Convert to frequency-domain representation
 windowLength = 256;
 overlapLength = 128;
 [~,f,~,S] = spectrogram(mean(audioIn,2), ...
 hann(windowLength,"Periodic"), ...
 overlapLength, ...
 windowLength, ...
 info.SampleRate, ...
 "power", ...
 "onesided");

 % Extract features
 [kurtosis,spread,centroid] = spectralKurtosis(S,f);
 skewness = spectralSkewness(S,f);
 crest = spectralCrest(S,f);
 decrease = spectralDecrease(S,f);
 entropy = spectralEntropy(S,f);
 flatness = spectralFlatness(S,f);
 flux = spectralFlux(S,f);
 rolloff = spectralRolloffPoint(S,f);
 slope = spectralSlope(S,f);

 % Concantenate to create feature vectors
 dataOut = [kurtosis,spread,centroid,skewness,crest,decrease,entropy,flatness,flux,rolloff,slope];

end

Call transform to create a TransformedDatastore with Transforms set to
extractFeatureVector.

ADSnew = transform(ADS,@extractFeatureVector,'IncludeInfo',true)

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 Transforms: {@extractFeatureVector}
 IncludeInfo: 1

4 Classes in Audio Toolbox

4-10

Call read to return the feature vectors for the audio over time.

featureMatrix = read(ADSnew);
[numFeatureVectors,numFeatures] = size(featureMatrix)

numFeatureVectors =

 4215

numFeatures =

 11

Apply Bandpass Filtering

Use transform to create an audio datastore that applies bandpass filtering before
returning audio from the read function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, applyBandpassFilter, that applies a bandpass filter with a
passband between 1 and 15 kHz.

function [audioOut,info] = applyBandpassFilter(audioIn,info)

 audioOut = bandpass(audioIn,[1e3,15e3],info.SampleRate);

end

Call transform to create a TransformedDatastore with Transforms set to
applyBandpassFilter.

ADSnew = transform(ADS,@applyBandpassFilter,'IncludeInfo',true)

 transform

4-11

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 Transforms: {@applyBandpassFilter}
 IncludeInfo: 1

Call read to return the bandpass filtered audio from the transform datastore. Call read
to return the bandpass filtered audio from the original datastore. Plot the spectrograms to
visualize the difference.

[audio1,info1] = read(ADS);
[audio2,info2] = read(ADSnew);

figure(1)
spectrogram(audio1,hann(512),256,512,info1.SampleRate,'yaxis')
title('Original Signal')

figure(2)
spectrogram(audio2,hann(512),256,512,info2.SampleRate,'yaxis')
title('Filtered Signal')

4 Classes in Audio Toolbox

4-12

 transform

4-13

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

@fcn — Function that transforms data
function handle

Function that transforms data, specified as a function handle. The signature of the
function depends on the IncludeInfo parameter.

4 Classes in Audio Toolbox

4-14

• If IncludeInfo is set to false (default), the function transforms the audio output
from read. The info output from read is unaltered.

The transform function must have this signature:

function dataOut = fcn(audio)
...
end

• If IncludeInfo is set to true, the function transforms the audio output from read,
and can use or modify the information returned from read.

The transform function must have this signature:

function [dataOut,infoOut] = fcn(audio,infoIn)
...
end

 transform

4-15

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IncludeInfo',tf

IncludeInfo — Pass info through customized read function
false (default) | true

Pass info through the customized read function, specified as true or false. If true, the
transform function can use or modify the information it gets from read. If unspecified,
IncludeInfo defaults to false.
Data Types: logical

Output Arguments
transformDatastore — New datastore with customized read
TransformedDatastore

New datastore with customized read, returned as a TransformedDatastore with
UnderlyingDatastore set to ADS, Transforms set to fcn, and IncludeInfo set to
true or false.

See Also
audioDatastore | combine | hasdata | preview | read | readall | reset

Introduced in R2019a

4 Classes in Audio Toolbox

4-16

combine
Combine data from multiple datastores

Syntax
ADSnew = combine(ADS1,ADS2,...,ADSN)

Description
ADSnew = combine(ADS1,ADS2,...,ADSN) combines two or more datastores by
horizontally concatenating the data returned by read of the input datastores.

Examples

Combine Datastores

Create a datastore that maintains parity between the audio of the underlying datastores.
Create two separate audio datastores, and then create a combined datastore representing
the two underlying datastores.

Create a datastore ads1 that points to the audio files included with Audio Toolbox.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads1 = audioDatastore(folder);

Create a second datastore ads2 by adding noise to the audio in the ads1.

ads2 = transform(ads1,@(x) x + 0.01*randn(size(x)));

Create a combined datastore from ads1 and ads2.

adsCombined = combine(ads1,ads2);

 combine

4-17

Read the first pair of audio files from the combined datastore. Each read operation on
this combined datastore returns a pair of audio signals in a 1-by-2 cell array and a pair of
info structs in a 1-by-2 cell array.

[dataOut,infoOut] = read(adsCombined)

dataOut =

 1x2 cell array

 {539648x1 double} {539648x1 double}

infoOut =

 1x2 cell array

 {1x1 struct} {1x1 struct}

Plot the spectrograms of the first channels from both audio signals.

figure(1)
spectrogram(dataOut{1},hamming(512),256,512,infoOut{1}.SampleRate,'yaxis')
title('Original Data')

figure(2)
idx = size(dataOut,2)/2+1;
spectrogram(dataOut{2},hamming(512),256,512,infoOut{2}.SampleRate,'yaxis')
title('Noised Data')

4 Classes in Audio Toolbox

4-18

 combine

4-19

Input Arguments
ADS1,ADS2,...,ADSN — Audio datastores to combine
audioDatastore objects

Audio datastores to combine, specified as two or more comma separated
audioDatastore objects.

4 Classes in Audio Toolbox

4-20

Output Arguments
ADSnew — New audio datastore with combined data
audioDatastore object

New audio datastore with combined data, returned as a
matlab.io.datastore.CombinedDatastore object.

Calling read on the combined datastore returns a cell array containing the output of
calling read on the individual datastores.

See Also
audioDatastore | hasdata | preview | read | readall | reset | transform

Introduced in R2019a

 combine

4-21

progress
Fraction of files read

Syntax
fractionRead = progress(ADS)

Description
fractionRead = progress(ADS) returns the fraction of files read in the datastore as
a normalized value in the range [0,1].

Examples

Return Fraction of Files Read

Create an audioDatastore object ADS. Read a file from the datastore and then call
progress to return the fraction of files read.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

4 Classes in Audio Toolbox

4-22

 Labels: {}

fractionOfFilesRead = progress(ADS)

fractionOfFilesRead =

 0

data = read(ADS);
fractionOfFilesRead = progress(ADS)

fractionOfFilesRead =

 0.0345

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
fractionRead — Fraction of files read
normalized value in the range [0,1]

Fraction of files read, returned as a normalized value in the range [0,1].
Data Types: double

See Also
audioDatastore | hasdata

 progress

4-23

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-24

numpartitions
Return estimate for reasonable number of partitions for parallel processing

Syntax
n = numpartitions(ADS)
n = numpartitions(ADS,pool)

Description
n = numpartitions(ADS) returns the default number of partitions for the datastore,
ADS. The default number of partitions is the total number of files.

n = numpartitions(ADS,pool) returns a reasonable number of partitions to
parallelize ADS over the parallel pool, based on the total number of files and the number
of workers in pool. To parallelize datastore access, you must have Parallel Computing
Toolbox™ installed.

Examples

Estimate Reasonable Number of Partitions for Audio Datastore

numpartitions returns a reasonable number of partitions for an audio datastore. You
can use numpartitions as input to the partition function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');

ADS = audioDatastore(folder);

 numpartitions

4-25

Use numpartitions to estimate a reasonable number of partitions for the audio
datastore, ADS. By default, numpartitions returns the number of files the audio
datastore points to.

n = numpartitions(ADS)

n =

 29

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of
workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given
the current parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);

4 Classes in Audio Toolbox

4-26

 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

pool — Parallel pool
parallel pool object

Parallel pool object.

Output Arguments
n — Number of partitions
positive integer

Number of partitions to parallelize datastore access over.

See Also
audioDatastore | partition

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 numpartitions

4-27

partition
Partition datastore and return on partitioned portion

Syntax
subADS = partition(ADS,numPartitions,index)
subADS = partition(ADS,'Files',index)
subADS = partition(ADS,'Files',filename)

Description
subADS = partition(ADS,numPartitions,index) partitions datastore ADS into the
number of parts specified by numPartitions and returns the partition corresponding to
the index.

subADS = partition(ADS,'Files',index) partitions the datastore by files and
returns the partition corresponding to the file of index index in the Files property.

subADS = partition(ADS,'Files',filename) partitions the datastore by files and
returns the partition corresponding to the file specified by filename.

Examples

Partition Datastore into Specific Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =

4 Classes in Audio Toolbox

4-28

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Partition the datastore into three parts.

subADS1 = partition(ADS,3,1)
subADS2 = partition(ADS,3,2)
subADS3 = partition(ADS,3,3)

subADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 7 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

subADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 ... and 7 more
 }

 partition

4-29

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

subADS3 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg';
 'B:\matlab\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav'
 ... and 6 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Partition Datastore into Default Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Get the default number of partitions for ADS.

n = numpartitions(ADS);

Partition the datastore into the default number of partitions and return the datastore
corresponding to the first partition.

subADS = partition(ADS,n,1);

Read the data in subADS.

while hasdata(subADS)
 data = read(subADS);
end

4 Classes in Audio Toolbox

4-30

Partition Datastore by Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Partition the datastore by files and return the part corresponding to the second file.
subds contains one file.

subds = partition(ADS,'Files',2)

subds =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of
workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given
the current parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

 partition

4-31

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

numPartitions — Number of partitions
positive integer

Number of partitions, specified as a positive integer. Use numpartitions to estimate a
reasonable value for numPartitions.
Data Types: double

index — Index of sub-datastore
positive integer

Index of sub-datastore, specified as a positive integer in the range [1,numPartitions].
Data Types: double

filename — File name
character vector

File name, specified as a character vector.

The value of filename must match exactly the file name contained in the Files property
of the datastore.
Data Types: char

4 Classes in Audio Toolbox

4-32

Output Arguments
subADS — Output audio datastore
audioDatastore object

Output audio datastore, returned as an audioDatastore object.

See Also
audioDatastore | numpartitions

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 partition

4-33

countEachLabel
Count number of unique labels

Syntax
tbl = countEachLabel(ADS)
tbl = countEachLabel(ADS,'TableVariable',VariableName)

Description
tbl = countEachLabel(ADS) counts the number of times each unique label occurs in
the datastore. In other words, it counts the number of files with each unique label. The
output tbl is a table with variable names Label and Count.

tbl = countEachLabel(ADS,'TableVariable',VariableName) counts the
number of times each unique label occurs in the datastore. When the datastore Labels
property is specified by a table, you must specify VariableName. VariableName is the
table variable (column) name you want to count.

Examples

Label Count

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder. Specify the LabelSource
property as foldernames, so that the label associated with each file is set to the folder
name that contains the file.

ads = audioDatastore(folder,'Labelsource','foldernames')

ads =

4 Classes in Audio Toolbox

4-34

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Labels: [samples; samples; samples ... and 26 more categorical]
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Call countEachLabel to count the number of times each unique label occurs.

tbl = countEachLabel(ads)

tbl =

 1x2 table

 Label Count
 _______ _____

 samples 29

Label Count when Labels Is Specified by Table

If the Labels property of an audio datastore is specified as a table, you must specify the
table variable name when counting labels.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =

 countEachLabel

4-35

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

The file names contain information about the files. Parse the file names to collect
information about whether a file is mono or stereo and whether a file is longer than thirty
seconds. Create a table containing the parsed information and then set the Labels
property of the audio datastore to the label table.

numFiles = numel(ADS.Files);

numChannels = cell(numFiles,1);
isLong = cell(numFiles,1);

for i = 1:numFiles
 if ~isempty(strfind(ADS.Files{i},'mono'))
 numChannels{i} = 'mono';
 elseif ~isempty(strfind(ADS.Files{i},'stereo'))
 numChannels{i} = 'stereo';
 else
 numChannels{i} = 'unknown';
 end

 secs = str2double(regexp(ADS.Files{i}, '-(\d+)secs', 'tokens', 'once'));
 if secs > 30
 isLong{i} = true;
 elseif secs <= 30
 isLong{i} = false;
 else
 isLong{i} = 'unknown';
 end
end
labelTable = table(numChannels,isLong, ...
 'VariableNames',{'NumberOfChannels','IsLongerThan30Seconds'});

4 Classes in Audio Toolbox

4-36

ADS.Labels = labelTable;

Call countEachLabel on the audio datastore and specify the TableVariable as
NumberOfChannels. Call countEachLabel and specify the TableVariable as
IsLongerThan30Seconds.

countNumberOfChannelLabels = countEachLabel(ADS,'TableVariable','NumberOfChannels')

countDurationLabels = countEachLabel(ADS,'TableVariable','IsLongerThan30Seconds')

countNumberOfChannelLabels =

 3x2 table

 NumberOfChannels Count
 ________________ _____

 mono 16
 stereo 11
 unknown 2

countDurationLabels =

 3x2 table

 IsLongerThan30Seconds Count
 _____________________ _____

 false 18
 true 7
 unknown 4

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

 countEachLabel

4-37

VariableName — Label table variable name
character vector | string

Label table variable name, specified as a character vector or string that corresponds to a
table variable of the Label property.

This syntax is required if the Label property of audioDatastore is specified by a table.
Data Types: char | string

Output Arguments
tbl — Table of label counts
two-column table

Table of label counts, returned as a two-column table containing the name of each label in
ADS and the number of files associated with each label.
Data Types: table

See Also
audioDatastore | splitEachLabel

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-38

splitEachLabel
Splits datastore according to specified label proportions

Syntax
[ADS1,ADS2] = splitEachLabel(ADS,p)
[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN)
___ = splitEachLabel(___ ,'randomized')
___ = splitEachLabel(___ ,Name,Value)

Description
[ADS1,ADS2] = splitEachLabel(ADS,p) splits the audio files in ADS into two new
datastores, ADS1 and ADS2. The new datastore ADS1 contains the first p files from each
label ,and ADS2 contains the remaining files from each label. p can be either a number
between 0 and 1, exclusive, indicating the percentage of the files from each label to
assign to ADS1, or an integer indicating the absolute number of files from each label to
assign to ADS1.

[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN) splits the datastore into N
+1 new datastores. The new datastore ADS1 contains the first p1 files from each label, the
next new datastore ADS2 contains the next p2 files, and so on. If p1,…,pN represent
numbers of files, then their sum must be no more than the number of files in the smallest
label in the original datastore, ADS.

___ = splitEachLabel(___ ,'randomized') randomly assigns the specified
proportion of files from each label to the new datastores.

___ = splitEachLabel(___ ,Name,Value) specifies the properties of the new
datastores using one or more name-value pair arguments. For example, you can specify
which labels to split with 'Include','labelname'.

Examples

 splitEachLabel

4-39

Split by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are
an odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Split ADS into two datastores, ADS1 and ADS2, specifying that each new datastore
contains fifty percent of each label and the corresponding files. Call countEachLabel to
confirm that half of the files are labeled A and half of the files are labeled B for each of the
new datastores.

[ADS1,ADS2] = splitEachLabel(ADS,0.5)

ADS1count = countEachLabel(ADS1)
ADS2count = countEachLabel(ADS2)

ADS1 =

 audioDatastore with properties:

4 Classes in Audio Toolbox

4-40

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 8 more
 }
 Labels: {'A'; 'A'; 'A' ... and 8 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav'
 ... and 7 more
 }
 Labels: {'A'; 'A'; 'A' ... and 7 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS1count =

 2x2 table

 Label Count
 _____ _____

 A 5
 B 6

ADS2count =

 2x2 table

 Label Count
 _____ _____

 splitEachLabel

4-41

 A 5
 B 5

Split by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are
an odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Split ADS into two datastores, ADS1 and ADS2. Specify that ADS1 contains four of each
label and its corresponding file. ADS2 contains the remaining labels and corresponding
files. Call countEachLabel to confirm that ADS1 contains four files labeled A and four
files labeled B, and that ADS2 contains the remaining labels.

[ADS1,ADS2] = splitEachLabel(ADS,4)

ADS1count = countEachLabel(ADS1)
ADS2count = countEachLabel(ADS2)

4 Classes in Audio Toolbox

4-42

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 5 more
 }
 Labels: {'A'; 'A'; 'A' ... and 5 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav'
 ... and 10 more
 }
 Labels: {'A'; 'A'; 'A' ... and 10 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS1count =

 2x2 table

 Label Count
 _____ _____

 A 4
 B 4

ADS2count =

 splitEachLabel

4-43

 2x2 table

 Label Count
 _____ _____

 A 6
 B 7

Split Several Ways by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there is an
odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Split ADS into three new datastores, ADS60, ADS10, and ADS30. The first datastore,
ADS60, contains the first 60% of files with the A label and the first 60% of files with the B
label. ADS10 contains the next 10% of files from each label. ADS30 contains the remaining

4 Classes in Audio Toolbox

4-44

30% of files from each label. If the percentage applied to a label does not result in a
whole number of files, splitEachLabel rounds down to the nearest whole number.

[ADS60,ADS10,ADS30] = splitEachLabel(ADS,0.6,0.1)

ADS60 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 10 more
 }
 Labels: {'A'; 'A'; 'A' ... and 10 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS10 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS30 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 ... and 3 more
 }
 Labels: {'A'; 'A'; 'A' ... and 3 more}

 splitEachLabel

4-45

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS60)
countEachLabel(ADS10)
countEachLabel(ADS30)

ans =

 2x2 table

 Label Count
 _____ _____

 A 6
 B 7

ans =

 2x2 table

 Label Count
 _____ _____

 A 1
 B 1

ans =

 2x2 table

 Label Count
 _____ _____

 A 3
 B 3

4 Classes in Audio Toolbox

4-46

Split Labels Several Ways by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there is an
odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Split ADS into three new datastores, ADS1, ADS2, and ADS3. The first datastore, ADS1,
contains the first file with the A label and the first file with the B label. ADS2 contains the
next file from each label. ADS3 contains the remaining files from each label. If the
percentage applied to a label does not result in a whole number of files,
splitEachLabel rounds down to the nearest whole number.

[ADS1,ADS2,ADS3] = splitEachLabel(ADS,1,1)

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';

 splitEachLabel

4-47

 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS3 =

 audioDatastore with properties:

 Files: {
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 14 more
 }
 Labels: {'A'; 'A'; 'A' ... and 14 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS1)
countEachLabel(ADS2)
countEachLabel(ADS3)

ans =

 2x2 table

4 Classes in Audio Toolbox

4-48

 Label Count
 _____ _____

 A 1
 B 1

ans =

 2x2 table

 Label Count
 _____ _____

 A 1
 B 1

ans =

 2x2 table

 Label Count
 _____ _____

 A 8
 B 9

Split Labels in Random Order

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =

 audioDatastore with properties:

 splitEachLabel

4-49

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 18 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Add the label A to the first half of the files, and the label B to the second half. If there is an
odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Create two new datastores from the files in ADS by randomly drawing from each label.
The first datastore, ADS1, contains two random files with the A label and two random files
with the B label. ADS2 contains the remaining files from each label.

[ADS1,ADS2] = splitEachLabel(ADS,2,'randomized')

ADS1 =

 audioDatastore with properties:

 Files: {

4 Classes in Audio Toolbox

4-50

 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 ... and 1 more
 }
 Labels: {'A'; 'A'; 'B' ... and 1 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav'
 ... and 14 more
 }
 Labels: {'A'; 'A'; 'A' ... and 14 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Include and Exclude Specified Labels

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 18 more

 splitEachLabel

4-51

 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Add the label A to the first half of the files, and the label B to the second half. If there is an
odd number of files, assign the extra file the label B. Call countEachLabel to confirm
that half of the files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Create two new datastores from the files in ADS, including only the files with the A label.
ADS1 contains the first 70% of files with the A label, and ADS2 contains the remaining
30% of labels with the A label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Include','A')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }

4 Classes in Audio Toolbox

4-52

 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Equivalently, you can split only the A label by excluding the B label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Exclude','B')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }
 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';

 splitEachLabel

4-53

 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

Split Using Fraction and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Create a label table with two variables:

• containsMusic -- Can be either true or false.
• instrument -- Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";

4 Classes in Audio Toolbox

4-54

instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of
the label table with the rows of the datastore. Call countEachLabel to determine the
incidences of containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')
instrumentCount = countEachLabel(ADS,'TableVariable','instrument')

containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 22
 true 7

instrumentCount =

 3x2 table

 instrument Count
 __________ _____

 Drums 4
 Guitar 3
 Unknown 22

Split the datastore ADS into two, based on whether the audio file contains music. ADS1
contains 70% of the audio files that contain music, and ADS2 contains the rest. Call
countEachLabel to verify that the ratio of containsMusic == true to
containsMusic == false is preserved for the new datastores, within rounding.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')
ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

 splitEachLabel

4-55

ADS1_containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 15
 true 5

ADS2_containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 7
 true 2

Split the datastore ADS into two, based on the type of instrument present in the audio file.
ADS3 contains 25% of the audio files that have an instrument label, and ADS4 contains the
rest. Call countEachLabel to verify that the ratio of instrument == "drums" to
instrument == "guitar" is preserved for the new datastores, within rounding.

[ADS3,ADS4] = splitEachLabel(ADS,0.25,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')
ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS3_instrumentCount =

 3x2 table

 instrument Count
 __________ _____

 Drums 1
 Guitar 1
 Unknown 6

4 Classes in Audio Toolbox

4-56

ADS4_instrumentCount =

 3x2 table

 instrument Count
 __________ _____

 Drums 3
 Guitar 2
 Unknown 16

Split by Number of Files and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Create a label table with two variables:

• containsMusic - Can be either true or false.
• instrument - Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";
instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of
the label table with the rows of the datastore. Call countEachLabel to determine the
incidences of containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')
instrumentCount = countEachLabel(ADS,'TableVariable','instrument');

 splitEachLabel

4-57

containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 22
 true 7

Split the datastore ADS into two, based on whether the audio file contains music. ADS1
contains 5 of each label under the table variable containsMusic, and ADS2 contains the
rest. Call countEachLabel to verify.

[ADS1,ADS2] = splitEachLabel(ADS,5,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')
ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

ADS1_containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 5
 true 5

ADS2_containsMusicCount =

 2x2 table

 containsMusic Count
 _____________ _____

 false 17
 true 2

4 Classes in Audio Toolbox

4-58

Split the datastore ADS into two, based on the type of instrument present in the audio file.
ADS3 contains 2 of each label under the table variable instrument, and ADS4 contains
the rest. Call countEachLabel to verify.

[ADS3,ADS4] = splitEachLabel(ADS,2,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')
ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS3_instrumentCount =

 3x2 table

 instrument Count
 __________ _____

 Drums 2
 Guitar 2
 Unknown 2

ADS4_instrumentCount =

 3x2 table

 instrument Count
 __________ _____

 Drums 2
 Guitar 1
 Unknown 20

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

p — Proportion of files to split
scalar in interval (0,1) | positive integer scalar

 splitEachLabel

4-59

Proportion of files to split, specified as a scalar in the interval (0,1), or a positive integer
scalar.

If p is in the interval (0,1), it represents the percentage of the files from each label to
assign to ADS1. If p represents a percentage, and it does not result in a whole number,
then splitEachLabel rounds down to the nearest whole number.

If p is an integer, it represents the absolute number of files from each label to assign to
ADS1. When p represents a number of files, there must be at least p files associated with
each label.
Data Types: double

p1,...,pN — List of proportions
scalars in interval (0,1) | positive integer scalars

List of proportions, specified as scalars in the interval (0,1) or positive integer scalars.

If the proportions are in the interval (0,1), they represent the percentage of the files from
each label to assign to the output datastores. When the proportions represent
percentages, their sum must be no more than 1.

If the proportions are integers, they indicate the absolute number of files from each label
to assign to the output datastores. When the proportions represent numbers of files, there
must be enough files associated with each label to satisfy each proportion.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [ADS1,ADS2] = splitEachLabel(ADS,0.5,'Exclude','noisy')

Include — Labels to include
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to include, specified as the comma-separated pair consisting of 'Include' and a
vector, cell array, or string array of label names with the same type as the Labels

4 Classes in Audio Toolbox

4-60

property. Each name must match one of the labels in the Labels property of the
datastore.

This option cannot be used with the 'Exclude' option.

Exclude — Labels to exclude
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to exclude, specified as the comma-separated pair consisting of 'Exclude' and a
vector, cell array, or string array of label names with the same type as the Labels
property. Each name must match one of the labels in the Labels property of the
datastore.

This option cannot be used with the 'Include' option.

TableVariable — Label table variable name
char | string

Table variable name, specified as the comma-separated pair consisting of
'TableVariable' and a character vector or string. When the Labels property of the
audio datastore ADS is a table, you must use 'TableVariable' to specify which label
you are using to split.
Data Types: char | string

Output Arguments
[ADS1,ADS2] — Output audio datastores
audioDatastore objects

Output audio datastores, returned as audioDatastore objects. ADS1 contains the
specified proportion of files from each label in ADS, and ADS2 contains the remaining
files.

[ADS1,...,ADSM] — List of output audio datastores
audioDatastore objects

List of output audio datastores, returned as audioDatastore objects. The number of
elements in the list is one more that the number of listed proportions. Each of the new
datastores contains the proportion of each label in ADS defined by p1,…,pN. Any files left
over are assigned to the Mth datastore.

 splitEachLabel

4-61

See Also
audioDatastore | countEachLabel | subset

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-62

preview
Read first file from datastore for preview

Syntax
data = preview(ADS)

Description
data = preview(ADS) always reads the first file from ADS. preview does not affect the
state of ADS.

Examples

Preview Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Preview the data in the audio datastore.

data = preview(ADS);
plot(data)

 preview

4-63

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Subset of data
array of audio samples

4 Classes in Audio Toolbox

4-64

Subset of data, returned as an array of audio samples.

See Also
audioDatastore | hasdata

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 preview

4-65

subset
Create datastore with subset of files

Syntax
ADSsubset = subset(ADS,indices)

Description
ADSsubset = subset(ADS,indices) returns an audio datastore, ADSsubset, which
contains a subset of the files in ADS.

Examples

Create Datastore with Subset Based on File Name

subset creates an audio datastore containing a subset of the files of the original
datastore.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more

4 Classes in Audio Toolbox

4-66

 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Create a logical vector indicating whether the file names in the audio datastore contain
'Guitar'.

fileContainsGuitar = cellfun(@(c)contains(c,'Guitar'),ADS.Files)

fileContainsGuitar =

 29x1 logical array

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 0
 0
 0
 0
 0
 0

 subset

4-67

 0

Call subset with the audio datastore and the indices corresponding to the files you want
create a new audio datastore from.

ADSsubset = subset(ADS,fileContainsGuitar)

ADSsubset =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav';
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Create Datastore with Every Other File

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}

4 Classes in Audio Toolbox

4-68

 OutputDataType: 'double'
 Labels: {}

Create an audio datastore containing every other file of the original datastore.

indices = 1:2:numel(ADS.Files);
ADSsubset = subset(ADS,indices)

ADSsubset =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 12 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

indices — Indices of files for subset
vector of indices | logical vector

Specify indicies as:

• A vector containing the indices of files to be included in ADSsubset.
• A logical vector the same length as the number of files in ADS. If specifying indices as

a logical vector, true indicates that the corresponding files are included in
ADSsubset.

Data Types: double | logical

 subset

4-69

Output Arguments
ADSsubset — Subset of audio datastore
audioDatastore object

Subset of audio datastore, returned as an audioDatastore object.

See Also
audioDatastore | splitEachLabel

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-70

shuffle
Shuffle files in datastore

Syntax
shuffledADS = shuffle(ADS)

Description
shuffledADS = shuffle(ADS) creates a deep copy of the input datastore, ADS, and
shuffles the files using randperm.

Examples

Shuffle Files

Create an audioDatastore object ADS. Shuffle the files to create a new datastore
containing the same files in random order.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

 shuffle

4-71

 Labels: {}

ADSshuffled = shuffle(ADS)

ADSshuffled =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

Output Arguments
shuffledADS — Shuffled audio datastore
audioDatastore object

Shuffled audio datastore, returned as an audioDatastore object containing randomly
ordered files from ADS.

See Also
audioDatastore

4 Classes in Audio Toolbox

4-72

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 shuffle

4-73

hasdata
Return true if there is more data in datastore

Syntax
tf = hasdata(ADS)

Description
tf = hasdata(ADS) returns logical 1 (true) if there is data available to read from the
datastore specified by ADS. Otherwise, it returns logical 0 (false).

Examples

Keep Reading While Datastore Has Data

hasdata returns a logical scalar indicating whether or not there is unread data in the
datastore. You can use audioDatastore to read files sequentially until all data is read.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder);

While the datastore has unread data, read from the datastore.

4 Classes in Audio Toolbox

4-74

while hasdata(ADS)
 data = read(ADS);
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
tf — Indication if data is available to read
true | false

Indication is data is available to read from the datastore, returned as true or false.
Data Types: logical

See Also
audioDatastore | progress | read

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 hasdata

4-75

reset
Reset datastore read pointer to start of data

Syntax
reset(ADS)

Description
reset(ADS) resets the datastore read pointer to the start of the data. Resetting allows
re-reading from the same datastore.

Examples

Reset Audio Datastore to Initial State

Create an audioDatastore object ADS.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the datastore has unread files, call read in a loop to read files sequentially.

while hasdata(ADS)
 data = read(ADS);
end

Reset the datastore to the state where no data has been read from it. Read the first file
from the datastore.

4 Classes in Audio Toolbox

4-76

reset(ADS)
data = read(ADS);

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

See Also
audioDatastore

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 reset

4-77

readall
Read all audio files from datastore

Syntax
data = readall(ADS)

Description
data = readall(ADS) reads all audio files from the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Read all the data in the datastore.

readall(ADS)

ans =

 29x1 cell array

 { 539648x1 double}
 { 320512x4 double}
 { 227497x1 double}

4 Classes in Audio Toolbox

4-78

 { 8000x1 double}
 { 685056x1 double}
 { 882688x2 double}
 { 24000x1 double}
 { 1115760x2 double}
 { 1214832x2 double}
 { 263304x16 double}
 { 180224x1 double}
 { 32768x1 double}
 { 6076484x2 double}
 { 112893x1 double}
 { 913152x1 double}
 { 913152x1 double}
 { 1265935x2 double}
 { 505200x2 double}
 { 550128x2 double}
 { 3195904x2 double}
 { 6960000x2 double}
 {26300000x1 double}
 { 39922x1 double}
 { 411648x1 double}
 { 989184x1 double}
 { 796672x2 double}
 { 8000000x1 double}
 { 1600000x1 double}
 { 1012748x2 double}

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — All audio files in audio datastore
cell array

 readall

4-79

All files in the audio datastore, returned as a cell array where each cell corresponds to a
file.

See Also
audioDatastore | read

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-80

read
Read next consecutive audio file

Syntax
data = read(ADS)
[data,info] = read(ADS)

Description
data = read(ADS) returns audio extracted from the datastore. Each subsequent call to
the read function continues reading from the endpoint of the previous call.

[data,info] = read(ADS) also returns information about the extracted audio data.

Examples

Read Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio
datastore that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the audio datastore has unread files, read consecutive files from the datastore. Use
progress to monitor the fraction of files read.

while hasdata(ADS)
 data = read(ADS);
 fprintf('Fraction of files read: %.2f\n',progress(ADS))
end

Fraction of files read: 0.03
Fraction of files read: 0.07

 read

4-81

Fraction of files read: 0.10
Fraction of files read: 0.14
Fraction of files read: 0.17
Fraction of files read: 0.21
Fraction of files read: 0.24
Fraction of files read: 0.28
Fraction of files read: 0.31
Fraction of files read: 0.34
Fraction of files read: 0.38
Fraction of files read: 0.41
Fraction of files read: 0.45
Fraction of files read: 0.48
Fraction of files read: 0.52
Fraction of files read: 0.55
Fraction of files read: 0.59
Fraction of files read: 0.62
Fraction of files read: 0.66
Fraction of files read: 0.69
Fraction of files read: 0.72
Fraction of files read: 0.76
Fraction of files read: 0.79
Fraction of files read: 0.83
Fraction of files read: 0.86
Fraction of files read: 0.90
Fraction of files read: 0.93
Fraction of files read: 0.97
Fraction of files read: 1.00

Return Information About Data

Specify the file path to the audio samples you want to include in the audio datastore. In
this example, the samples are located on a local desktop. Create an audio datastore that
points to the specified folder.

folder = 'C:\Users\bhemmat\Desktop';
ADS = audioDatastore(folder,'LabelSource','foldernames');

When you read data from the datastore, you can additionally return information about the
data as a struct. The information struct contains the file name, any labels associated with
the file, and the sample rate of the file.

[data,info] = read(ADS);
info

4 Classes in Audio Toolbox

4-82

info =

 struct with fields:

 SampleRate: 44100
 FileName: 'C:\Users\bhemmat\Desktop\Turbine-16-44p1-mono-22secs.wav'
 Label: Desktop

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Audio data
M-by-N matrix

Audio data, returned as a M-by-N matrix, where:

• M –– Total samples per channel in file.
• N –– Number of channels in file.

info — Information about audio data
struct

Information about audio data, returned as a struct with the following fields:

• FileName –– Name of the current file.
• Label –– All labels of the file.
• SampleRate –– Sample rate of the file.

See Also
audioDatastore | hasdata | readall

 read

4-83

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-84

audioDatastore
Datastore for collection of audio files

Description
Use an audioDatastore object to manage a collection of audio files, where each
individual audio file fits in memory, but the entire collection of audio files does not
necessarily fit.

Creation

Syntax
ADS = audioDatastore(location)
ADS = audioDatastore(location,Name,Value)

Description
ADS = audioDatastore(location) creates a datastore ADS based on an audio file or
collection of audio files in location.

ADS = audioDatastore(location,Name,Value) specifies additional parameters and
properties for ADS using one or more name-value pair arguments.

Input Arguments
location — Files or folders to include in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string
scalar, or a string array, containing the location of files or folders that are local or
remote.

 audioDatastore

4-85

• Local files or folders — Specify location as a local path to files or folders. If the
files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the
datastore. You can use the wildcard character (*) when specifying the local path.
This character specifies that the datastore include all matching files or all files in
the matching folders.

• Remote files or folders — Specify location to be the full paths of the files or
folders as an internationalized resource identifier (IRI) of the form hdfs:///
path_to_file. For more information, see “Work with Remote Data” (MATLAB).

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats
and ignores any other format. To specify a custom list of file extensions to include in your
datastore, see the FileExtensions property.
Example: 'song.wav'
Example: '../dir/music/song.wav'
Example: {'C:\dir\music\song.wav','C:\dir\speech\english.mp3'}
Example: 'C:\dir\music*.ogg'
Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ADS = audioDatastore('C:\dir
\audiodata','FileExtensions','.ogg')

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and
subfolders within each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.

4 Classes in Audio Toolbox

4-86

Example: 'IncludeSubfolders',true
Data Types: logical | double

LabelSource — Source providing label data
'none' (default) | 'foldernames'

Source providing label data, specified as the comma-separated pair consisting of
'LabelSource' and 'none' or 'foldernames'. If 'none' is specified, then the
Labels property is empty. If 'foldernames' is specified, then labels are assigned
according to the folder names and stored in the Labels property. You can later modify the
labels by accessing the Labels property directly.
Data Types: char | string

FileExtensions — Audio file extensions
character vector | cell array of character vectors | string scalar | string array

Audio file extensions, specified as the comma-separated pair consisting of
'FileExtensions' and a character vector, cell array of character vectors, string scalar,
or string array. If you do not specify 'FileExtensions', then audioDatastore
automatically includes all supported file types:

• .wav
• .avi
• .aif
• .aifc
• .aiff
• .mp3
• .au
• .snd
• .mp4
• .m4a
• .flac
• .ogg
• .mov

Example: 'FileExtensions','.wav'

 audioDatastore

4-87

Example: 'FileExtensions',{'.mp3','.mp4'}
Data Types: char | cell | string

In addition to these name-value pairs, you also can specify any of the properties on this
page as name-value pairs, except for the Files property.

Properties
Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, specified as a character vector, cell array of character
vectors, string scalar, or string array. Each character vector or string is a full path to a
file. The location argument in the audioDatastore defines Files when the datastore
is created.
Data Types: char | cell | string

Labels — File labels
categorical, logical, or numeric vector | cell array | string array | table

File labels for the files in the datastore, specified as a vector, a cell array, a string array, or
a table. The order of the labels in the array or table corresponds to the order of the
associated files in the datastore.

If you specify LabelSource as 'foldernames' when creating the audioDatastore
object, then the label name for a file is the name of the folder containing it. If you do not
specify LabelSource as 'foldernames', then Labels is an empty cell array or string
array. If you change the Files property after the datastore is created, then the Labels
property is not automatically updated to incorporate the added fields.
Data Types: categorical | cell | logical | double | single | string | table

OutputDataType — Data type of output read
'double' (default) | 'native'

Data type of the output, specified as 'double' or 'native'.

• 'double' –– Double-precision normalized samples.
• 'native' –– Native data type found in the file. Refer to audioread for more

information about data types when OutputDataType is set to native.

4 Classes in Audio Toolbox

4-88

The default value of this property is 'double'.
Data Types: char | string

AlternateFileSystemRoots — Alternate file system root paths
string row vector | cell array of string vectors | cell array of character vectors

Alternate file system root paths, specified as a string row vector, a cell array of string
vectors, or a cell array of character vectors. Use AlternateFileSystemRoots when
you create a datastore on a local machine but must access and process data on another
machine (possibly of a different operating system). Also, when processing data using
Parallel Computing Toolbox and MATLAB Parallel Server™, and the data is stored on your
local machines with a copy of the data available on different platform cloud or cluster
machines, you must use AlternateFileSystemRoots to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
AlternateFileSystemRoots as a string vector. For example:

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
AlternateFileSystemRoots as a cell array containing multiple rows, where each
row represents a set of equivalent root paths. Specify each row in the cell array as
either a string vector or a cell array of character vectors. For example:

• Specify AlternateFileSystemRoots as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"]; ...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify AlternateFileSystemRoots as a cell array of cell arrays of
character vectors.

{{'Z:\datasets', '/mynetwork/datasets'}; ...
 {'Y:\datasets", '/mynetwork2/datasets','S:\datasets'}}

The value of AlternateFileSystemRoots must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths, and each root path must contain at least two

characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

 audioDatastore

4-89

Data Types: char | cell | string

Object Functions
read Read next consecutive audio file
readall Read all audio files from datastore
reset Reset datastore read pointer to start of data
hasdata Return true if there is more data in datastore
shuffle Shuffle files in datastore
subset Create datastore with subset of files
preview Read first file from datastore for preview
progress Fraction of files read
splitEachLabel Splits datastore according to specified label proportions
countEachLabel Count number of unique labels
partition Partition datastore and return on partitioned portion
numpartitions Return estimate for reasonable number of partitions for parallel

processing
combine Combine data from multiple datastores
transform Transform audio datastore

Examples

Create Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';

4 Classes in Audio Toolbox

4-90

 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

Specify File Extensions to Include

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the .ogg files in the specified folder.

ADS = audioDatastore(folder,'FileExtension','.ogg')

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

See Also
datastore | mapreduce | tall

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using Long Short-Term Memory Networks”

 audioDatastore

4-91

“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes in Audio Toolbox

4-92

midimsg
Create MIDI message

Description
Create a MIDI message in MATLAB using midimsg. Create a MIDI device interface using
mididevice. Send and receive messages using midisend and midireceive. When you
create a MIDI message, you specify it as a MIDI message type.

For a tutorial on MIDI messages and interfacing with MIDI devices, see “MIDI Device
Interface”.

Creation

Syntax
msg = midimsg('Note',channel,note,velocity,duration,timestamp)
msg = midimsg('NoteOn',channel,note,velocity,timestamp)
msg = midimsg('NoteOff',channel,note,velocity,timestamp)
msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp)
msg = midimsg('ProgramChange',channel,program,timestamp)
msg = midimsg('SystemExclusive',bytes,timestamp)

 midimsg

4-93

msg = midimsg('SystemExclusive',timestamp)
msg = midimsg('Data',bytes,timestamp)
msg = midimsg('EOX',timestamp)
msg = midimsg('TimingClock',timestamp)
msg = midimsg('Start',timestamp)
msg = midimsg('Continue',timestamp)
msg = midimsg('Stop',timestamp)
msg = midimsg('ActiveSensing',timestamp)
msg = midimsg('SystemReset',timestamp)
msg = midimsg('TuneRequest',timestamp)
msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp)
msg = midimsg('SongPositionPointer',position,timestamp)
msg = midimsg('SongSelect',song,timestamp)
msg = midimsg('AllSoundOff',channel,timestamp)
msg = midimsg('ResetAllControllers',channel,timestamp)
msg = midimsg('LocalControl',channel,localcontrol,timestamp)
msg = midimsg('PolyOn',channel,timestamp)
msg = midimsg('MonoOn',channel,monoChannels,timestamp)
msg = midimsg('OmniOn',channel,timestamp)
msg = midimsg('OmniOff',channel,timestamp)
msg = midimsg('AllNotesOff',channel,timestamp)
msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp)
msg = midimsg('ChannelPressure',channel,pressure,timestamp)
msg = midimsg('PitchBend',channel,change,timestamp)
msg = midimsg
msg = midimsg(size)
msg = midimsg(0)

Description
msg = midimsg('Note',channel,note,velocity,duration,timestamp) returns
two MIDI messages: NoteOn and NoteOff, with specified Channel, Note, Velocity,
and Timestamp properties. The Timestamp property of the NoteOff message is
determined as the Timestamp property of the NoteOn message plus the duration.

msg = midimsg('NoteOn',channel,note,velocity,timestamp) returns a
NoteOn midimsg, with specified Channel, Note, Velocity, and Timestamp properties.

4 Classes in Audio Toolbox

4-94

msg = midimsg('NoteOff',channel,note,velocity,timestamp) returns a
NoteOff midimsg, with specified Channel, Note, Velocity, and Timestamp
properties.

msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp)
returns a ControlChange midimsg, with specified Channel, CCNumber, CCValue, and
Timestamp properties.

msg = midimsg('ProgramChange',channel,program,timestamp) returns a
ProgramChange midimsg, with specified Channel, Program, and Timestamp
properties.

msg = midimsg('SystemExclusive',bytes,timestamp) returns a complete
SystemExclusive message sequence, with specified Timestamp property.

msg = midimsg('SystemExclusive',timestamp) returns a SystemExclusive
midimsg, with specified Timestamp property.

msg = midimsg('Data',bytes,timestamp) returns a Data midimsg for use in a
System Exclusive message, with specified MsgBytes and Timestamp properties. bytes
is specified as a scalar, vector, or multi-dimensional array of elements. Each element of
bytes must be in the range [0,127].

msg = midimsg('EOX',timestamp) returns an EOX midimsg, with specified
Timestamp property.

msg = midimsg('TimingClock',timestamp) returns a TimingClock midimsg, with
specified Timestamp property.

msg = midimsg('Start',timestamp) returns a Start midimsg, with specified
Timestamp property.

msg = midimsg('Continue',timestamp) returns a Continue midimsg, with
specified Timestamp property.

msg = midimsg('Stop',timestamp) returns a Stop midimsg, with specified
Timestamp property.

msg = midimsg('ActiveSensing',timestamp) returns a ActiveSensing
midimsg, with specified Timestamp property.

msg = midimsg('SystemReset',timestamp) returns a SystemReset midimsg, with
specified Timestamp property.

 midimsg

4-95

msg = midimsg('TuneRequest',timestamp) returns a TuneRequest midimsg, with
specified Timestamp property.

msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp) returns a
MIDITimeCodeQuarterFrame midimsg, with specified TimeCodeSequence,
TimeCodeValue, and Timestamp properties.

msg = midimsg('SongPositionPointer',position,timestamp) returns a
SongPositionPointer midimsg, with specified SongPosition and Timestamp
properties.

msg = midimsg('SongSelect',song,timestamp) returns a SongSelect midimsg,
with specified Song and Timestamp properties.

msg = midimsg('AllSoundOff',channel,timestamp) returns a AllSoundOff
midimsg, with specified Channel and Timestamp properties.

msg = midimsg('ResetAllControllers',channel,timestamp) returns a
ResetAllControllers midimsg, with specified Channel and Timestamp properties.

msg = midimsg('LocalControl',channel,localcontrol,timestamp) returns a
LocalControl midimsg, with specified Channel, LocalControl, and Timestamp
properties.

msg = midimsg('PolyOn',channel,timestamp) returns a PolyOn midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('MonoOn',channel,monoChannels,timestamp) returns a MonoOn
midimsg, with specified Channel, MonoChannels, and Timestamp properties.

msg = midimsg('OmniOn',channel,timestamp) returns an OmniOn midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('OmniOff',channel,timestamp) returns an OmniOff midimsg,
with specified Channel and Timestamp properties.

msg = midimsg('AllNotesOff',channel,timestamp) returns an AllNotesOff
midimsg, with specified Channel and Timestamp properties.

msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp)
returns a PolyKeyPressure midimsg, with specified Channel, Note, Pressure, and
Timestamp properties.

4 Classes in Audio Toolbox

4-96

msg = midimsg('ChannelPressure',channel,pressure,timestamp) returns a
ChannelPressure midimsg, with specified Channel, Pressure, and Timestamp
properties.

msg = midimsg('PitchBend',channel,change,timestamp) returns a PitchBend
midimsg, with specified Channel, PitchChange, and Timestamp properties.

msg = midimsg returns a scalar midimsg with all zero bytes. All zero bytes indicates a
MIDI message with Type set to Data.

msg = midimsg(size) returns a midimsg array of size with all zero bytes.

msg = midimsg(0) returns an empty midimsg.

Note If timestamp is listed as an argument, it is optional and defaults to zero. The
exception is the 'SystemExclusive',bytes,timestamp syntax, in which case the
timestamp argument is required.

Properties
Type — Type of MIDI message
NoteOn | NoteOff | ControlChange | ProgramChange | SystemExclusive | Data |
EOX | ...

This property is read-only.

Type of MIDI message, returned as one of the following midimsgtype enumeration
values:

NoteOn Data Stop SongPositi
onPointer

PolyOn PolyKeyPre
ssure

NoteOff EOX ActiveSens
ing

SongSelect MonoOn ChannelPre
ssure

ControlCha
nge

TimingCloc
k

SystemRese
t

AllSoundOf
f

OmniOn PitchBendC
hange

ProgramCha
nge

Start TuneReques
t

ResetAllCo
ntrollers

OmniOff Undefined

 midimsg

4-97

SystemExcl
usive

Continue MIDITimeCo
deQuarterF
rame

LocalContr
ol

AllNotesOf
f

You can specify the type of MIDI message during creation as a character vector, string, or
member of the midimsgtype enumeration.

For example, the following create equivalent MIDI messages:

• midimsg('SongPositionPointer',1)
• midimsg("SongPositionPointer",1)
• midimsg(midimsgtype.SongPositionPointer,1)

NumMsgBytes — Number of bytes in MIDI message
scalar | vector | array

This property is read-only.

Number of bytes in the MIDI message, returned as a scalar, vector, or array the same size
as msg.
Data Types: double

MsgBytes — Actual bytes of constructed MIDI message (decimal)
scalar | vector | array

This property is read-only.

Actual bytes of the constructed MIDI message in decimal, returned as a scalar, vector, or
array the same size as msg.
Data Types: uint8

Timestamp — Location in time for MIDI message
scalar | vector | array

Location in time for the MIDI message, specified as a scalar, vector, or array the same
size as msg.

You can specify the timestamp as any numeric value. However, the timestamp is always
stored and returned as type double.

4 Classes in Audio Toolbox

4-98

For more on how MIDI timestamps are implemented in Audio Toolbox, see “MIDI Message
Timing”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Channel — MIDI channel to which message is addressed
integer in the range [1,16]

MIDI channel to which message is addressed, specified as an integer in the range [1,16].

Dependencies

This property is valid only for NoteOn, NoteOff, PolyKeyPressure, AllSoundOff,
ResetAllControllers, LocalControl, AllNotesOff, OmniOn, OmniOff, MonoOn,
PolyOn, ControlChange, ProgramChange, ChannelPressure, and PitchBend
midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Note — MIDI note number
integer in the range [0,127]

MIDI note number, specified as an integer in the range [0,127]. The MIDI specification
defines note number 60 as Middle C, and all other notes are relative. MIDI devices and
software define the mapping between a note and a MIDI note number. If Middle C is
arbitrarily assumed to be C5 for the target MIDI hardware or software, the following
table maps between MIDI note numbers and notes:

 midimsg

4-99

Dependencies

This property is valid only for NoteOn, NoteOff, and PolyKeyPressure midimsg
objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Velocity — Velocity of MIDI message
integer in the range [0,127]

Velocity of MIDI message, specified as a scalar integer in the range [0,127]. Velocity
describes how fast, or "hard," a note is played. A higher number corresponds to faster
velocity.
Dependencies

This property is valid only for NoteOn and NoteOff midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

KeyPressure — Key pressure
integer in the range [0,127]

Key pressure, specified as a scalar integer in the range [0,127]. Key pressure applies
aftertouch to an individual note. For example, on a keyboard, key pressure describes the

4 Classes in Audio Toolbox

4-100

pressure applied to a key after that key has been struck (after a NoteOn message is sent).
You can use KeyPressure to add expression to held notes.

Dependencies

This property is valid only for PolyKeyPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LocalControl — Enable local control
true | false

Enable local control, specified as true or false. When local control is set to false, all
devices on a given channel respond only to data received over MIDI.

Dependencies

This property is valid only for LocalControl midimsg objects.
Data Types: logical

MonoChannels — Channels for MonoOn messages
integer in the range [0,16]

Channels for MonoOn messages, specified as a scalar integer in the range [0,16].

Dependencies

This property is valid only for MonoOn midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

CCNumber — Control change number
integer in the range [0,119]

Control change number, specified as an integer in the range [0,119].

Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 midimsg

4-101

CCValue — Control change value
integer in the range [0,127]

Control change value, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Program — Program number to switch to
integer in the range [0,127]

Program number to switch to, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ProgramChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

ChannelPressure — Channel pressure
integer in the range [0,127]

Channel pressure, specified as an integer in the range [0,127]. Key pressure applies
aftertouch to all notes in a channel.
Dependencies

This property is valid only for ChannelPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

PitchChange — Amount of pitch change to apply
integer in the range [0,16383]

Amount of pitch change to apply, specified as an integer in the range [0,16383]. The
center position (no effect) is 8192. Sensitivity is a function of the receiver.
Dependencies

This property is valid only for PitchBend midimsg objects.

4 Classes in Audio Toolbox

4-102

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TimeCodeSequence — Sequence number
integer in the range [0,7]

Sequence number, specified as an integer in the range [0,7].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

TimeCodeValue — Time code value
integer in the range [0,15]

Time code value, specified as an integer in the range [0,15].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

SongPosition — Position in song to go to
integer in the range [0,16383]

Position in song to go to, specified as an integer in the range [0,16383].

Dependencies

This property is valid only for SongPositionPointer midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Song — Song number to switch to
integer in the range [0,127]

Song number to switch to, specified as an integer in the range [0,127].

 midimsg

4-103

Dependencies

This property is valid only for SongSelect midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Examples

Create Note Messages

You can create MIDI note messages using the NoteOn and NoteOff midimsg objects. A
NoteOn message indicates that a note should begin playing. A NoteOff message
indicates that a note should stop playing. Alternatively, you can send a second NoteOn
message with velocity set to zero to indicate that the note should stop playing. The Audio
Toolbox® provides a convenience syntax to create pairs of note on and note off messages.

Create a pair of MIDI messages to indicate a Note On and Note Off sequence using the
Note convenience syntax. Specify that the note starts after one second, and has a
duration of two seconds.

channel = 1;
note = 60;
velocity = 64;
duration = 2;
timestamp = 1;
msgs = midimsg('Note',channel,note,velocity,duration,timestamp)

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

Two midimsg objects are created and returned as an array. The Note syntax returns the
note off message as a NoteOn midimsg object with Velocity set to zero.

To create Note On and Note Off messages separately, create two NoteOn messages and
concatenate them.

msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOn',channel,note,0,3)]

4 Classes in Audio Toolbox

4-104

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

You can also specify the Note Off using a NoteOff midimsg object. Using the NoteOff
syntax enables you to specify a release velocity.

 msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOff',channel,note,velocity,3)]

msgs =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOff Channel: 1 Note: 60 Velocity: 64 Timestamp: 3 [80 3C 40]

Control Change Messages for Control Surfaces

To create a control change message, specify the midimsg Type as ControlChange and
set the required parameters: Channel, CCNumber, and CCValue. To determine the
channel and control number assigned to your MIDI control surface, use midiid. Enter
midiid at the Command Prompt and then move the control you want to identify.

[ccInfo,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

midiid returns the control change number and channel as a single number according to
the following formula: ccInfo = (Channel*1000 + CCNumber). Define a MIDI
Control Change message to move the identified controller. Your MIDI Control Surface
must be bidirectional to receive Control Change messages.

channel = floor(ccInfo/1000);
ccnumber = ccInfo - channel*1000;
ccvalue = 1;
msg = midimsg('ControlChange',channel,ccnumber,ccvalue)

msg =
 MIDI message:
 ControlChange Channel: 1 CCNumber: 16 CCValue: 1 Timestamp: 0 [B0 10 01]

 midimsg

4-105

Create a mididevice object using the deviceName identified using midiid. Send the
MIDI message to your device.

device = mididevice(deviceName);
midisend(device,msg);

Create a Program Change Message

Program Change messages, sometimes called "patch change" messages, specify how
notes are interpreted. For example, a Program Change message can specify the
instrument being played. To create a ProgramChange midimsg object, specify the
midimsg type as ProgramChange, and the required property values: Channel and
Program.

channel = 4;
program = 7;
msg = midimsg('ProgramChange',channel,program)

msg =
 MIDI message:
 ProgramChange Channel: 4 Program: 7 Timestamp: 0 [C3 07]

Create a System Exclusive Message

System Exclusive messages are defined by a sequence of midimsg objects:
SystemExclusive, Data, and EOX. To create a System Exclusive sequence, specify the
SystemExclusive midimsg type during creation and then specify the bytes of the
message. This syntax requires a timestamp.

bytes = [0 1 2];
timestamp = 0;
msg = midimsg('SystemExclusive',bytes,timestamp)

msg =
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]
 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

4 Classes in Audio Toolbox

4-106

You can also create the SystemExclusive, Data, and EOX midimsg objects individually.
For example, the following midimsg array is the same as the preceding.

msg = [midimsg('SystemExclusive',timestamp), ...
 midimsg('Data',bytes,timestamp), ...
 midimsg('EOX',timestamp)]

msg =
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]
 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

Create a Scalar Default MIDI Message

The default MIDI message is a scalar with all zero bytes, and Type is Data.

msg = midimsg

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

Preallocate Array of MIDI Messages

You can create a MIDI message array by specifying the size by a scalar or row vector.

If you specify the size as a scalar M, midimsg returns an M-by-M array with all zero
bytes.

msg = midimsg(2)

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

An array of MIDI messages is always displayed vertically in order of their linear indexing.
You can refer to individual elements of the array by specifying its position in each

 midimsg

4-107

dimension, or by its linear index. For example, change the Timestamp of the third
element from 0 to 2 using linear indexing, and then from 2 to 3 using first
dimensional indexing.

msg(3).Timestamp = 2

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 2 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

msg(1,2).Timestamp = 3

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 3 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

You can also specify nonsymmetric arrays. If you specify the size as a row vector of two or
more elements, midimsg returns an M-by-N-by-...-X multidimensional array. For example,
to specify a three dimensional array with each dimension having a different number of
elements, specify the size as a row vector of three elements.

msg = midimsg([2,1,3])

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

size(msg)

ans = 1×3

 2 1 3

4 Classes in Audio Toolbox

4-108

Create Empty MIDI Message

msg = midimsg(0)

msg =

 empty MIDI message array

Manipulate Array of MIDI Messages

In this example, you create an array of MIDI messages, and then index into the array in a
loop to define a melody.

Create a 22-by-1 array of MIDI messages with all zero data.

msgArray = midimsg([22,1]);

To create a melody, create MIDI NoteOn and NoteOff messages by indexing in a loop.
Display the result.

melody = [60,65,60,57,55,53,60,65,60,67,60];
for i = 1:numel(melody)
 idx = (2*i-1):(2*i);
 msgArray(idx) = midimsg('Note',1,melody(i),50,0.5,i);
end
msgArray

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]

 midimsg

4-109

 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]

The order of the MIDI messages in the array is only important for readability. When you
send MIDI messages using a mididevice object, the mididevice object reorders your
MIDI messages according to their timestamps and sends them in chronological order.
Create a PitchBend MIDI message to bend the fourth note downward and add it to the
MIDI message array. For readability, sort the MIDI message array by Timestamp.

msg = midimsg('PitchBend',1,7192,4.01);
msgArray = [msgArray;msg]

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]

4 Classes in Audio Toolbox

4-110

 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]
 PitchBend Channel: 1 PitchChange: 7192 Timestamp: 4.01 [E0 18 38]

timeStamps = [msgArray.Timestamp];
[~,idx] = sort(timeStamps);

msgArray = msgArray(idx)

msgArray =
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 PitchBend Channel: 1 PitchChange: 7192 Timestamp: 4.01 [E0 18 38]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 9 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 9.5 [90 3C 00]
 NoteOn Channel: 1 Note: 67 Velocity: 50 Timestamp: 10 [90 43 32]
 NoteOn Channel: 1 Note: 67 Velocity: 0 Timestamp: 10.5 [90 43 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 11 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 11.5 [90 3C 00]

See Also
mididevice | midireceive | midisend

Topics
“MIDI Device Interface”

 midimsg

4-111

External Websites
MIDI Manufacturers Association

Introduced in R2018a

4 Classes in Audio Toolbox

4-112

https://www.midi.org/

mididevice
Send and receive MIDI messages

Description
Interface to a MIDI device in MATLAB using mididevice. Package MIDI messages using
midimsg. Send and receive messages using midisend and midireceive. Use
mididevinfo to query your system for available MIDI devices.

For a tutorial on interfacing with MIDI devices, see “MIDI Device Interface”.

Creation

Syntax
device = mididevice(deviceNameOrID)
device = mididevice('Input',inDeviceNameOrID)
device = mididevice('Output',outDeviceNameOrID)
device = mididevice('Input',inDeviceNameOrID,
'Output',outDeviceNameOrID)

 mididevice

4-113

Description
device = mididevice(deviceNameOrID) returns an interface to the MIDI device
specified by deviceNameOrID. If the MIDI device supports MIDI in and MIDI out, then
device also supports MIDI in and MIDI out.

device = mididevice('Input',inDeviceNameOrID) returns an input interface to
the MIDI input device, inDeviceNameOrID.

device = mididevice('Output',outDeviceNameOrID) returns an output interface
to the MIDI output device, outDeviceNameOrID.

device = mididevice('Input',inDeviceNameOrID,
'Output',outDeviceNameOrID) returns a MIDI I/O interface, where input is received
from inDeviceNameOrID and output is sent to outDeviceNameOrID.

Properties
Input — Input device name associated with mididevice
empty char array (default)

This property is read-only.

Input device name attached to your mididevice object, returned as a character array.

Input is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

Output — Output device name associated with mididevice
empty char array (default)

This property is read-only.

Output device name attached to your mididevice object, returned as a character array

Output is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

InputID — Input device ID associated with mididevice
-1 (default)

4 Classes in Audio Toolbox

4-114

This property is read-only.

Unique MIDI input device ID attached to your mididevice object, returned as a scalar
double. If your system includes different MIDI devices with the same name, using the
device ID removes ambiguity.

InputID is set during the creation of the mididevice object and cannot be modified
later.
Data Types: double

OutputID — Output device name associated with mididevice
-1 (default)

This property is read-only.

Unique MIDI output device ID attached to your mididevice object, returned as a scalar
double. If your system includes different MIDI devices with the same name, using the
device ID removes ambiguity.

OutputID is set during the creation of the mididevice object and cannot be modified
later.
Data Types: double

Object Functions
midisend Send MIDI message to MIDI device
midireceive Receive MIDI message from MIDI device
hasdata Determine if data is available to read from MIDI device

Examples

Connect Input and Output to Single MIDI Device

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name

 mididevice

4-115

 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected device. If you specify a single
MIDI device object, and it is capable of both input and output, mididevice connects to
both the input and output.

device = mididevice('USB MIDI Interface ')

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'USB MIDI Interface ' (3)

Connect Input to MIDI Device

Query your system for MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected input device. As soon as you
create the MIDI device object, it begins listening for MIDI messages and storing them in a
buffer.

device = mididevice('Input','USB MIDI Interface ');

Connect Output to MIDI Device

Query your system for available MIDI devices.

mididevinfo

4 Classes in Audio Toolbox

4-116

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected output device.

device = mididevice('Output','USB MIDI Interface ')

device =
 mididevice connected to
 Output: 'USB MIDI Interface ' (3)

Connect Input and Output to Different MIDI Devices

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object that receives data from one device and sends data to another
device. In this example, the MIDI device object receives MIDI messages from the 'USB
MIDI Interface ' device and sends data to the 'Microsoft GS Wavetable Synth'
virtual output device. To avoid ambiguity, the MIDI devices are specified by the device
IDs.

device = mididevice('Input',1,'Output',2)

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'Microsoft GS Wavetable Synth' (2)

 mididevice

4-117

See Also
mididevinfo | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

4 Classes in Audio Toolbox

4-118

https://www.midi.org/

hasdata
Determine if data is available to read from MIDI device

Syntax
tf = hasdata(device)

Description
tf = hasdata(device) returns logical 1 (true) if there is data available to read from
the mididevice specified by device. Otherwise, it returns logical 0 (false).

Examples

Determine if Data Is Available to Receive

Create a mididevice object to interface with your MIDI device. Query your system for
available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

 hasdata

4-119

As soon as your mididevice object is created, it begins listening for MIDI messages and
storing them in a buffer. When you call midireceive, MIDI messages are retrieved from
the buffer and returned. You can use hasdata to query whether your mididevice object
buffer contains unread MIDI messages.

hasdata(device)

ans = logical
 0

Input Arguments
device — mididevice object
mididevice object

Specify device as an object created by mididevice.

See Also
mididevice | mididevinfo | midimsg | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

4 Classes in Audio Toolbox

4-120

https://www.midi.org/

midireceive
Receive MIDI message from MIDI device

Syntax
msgs = midireceive(device)
msgs = midireceive(device,maxmsgs)

Description
msgs = midireceive(device) returns the MIDI messages, msgs, received from a
MIDI device using the MIDI device interface, device.

msgs = midireceive(device,maxmsgs) specifies the maximum number of MIDI
messages to return as maxmsgs.

Examples

Receive MIDI Messages

To determine what MIDI devices are attached to your MIDI input ports, call
mididevinfo. Use the availableDevices struct to specify a valid MIDI device to
create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.input(1).ID);

Once your MIDI device object is created, it begins listening to MIDI messages from your
specified device and storing them in a buffer. To get all MIDI messages in the buffer, call
midireceive. In this example, several keys on a MIDI keyboard are played.

msgs = midireceive(device)

msgs =

 midireceive

4-121

 MIDI message:
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 3.94 [90 34 40]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.179 [90 34 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.19 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.382 [90 2F 40]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.459 [90 30 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.59 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.776 [90 2F 00]
 NoteOn Channel: 1 Note: 50 Velocity: 64 Timestamp: 4.788 [90 32 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.802 [90 2F 40]
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 4.831 [90 34 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.84 [90 2F 00]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.912 [90 30 00]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.953 [90 34 00]
 NoteOn Channel: 1 Note: 50 Velocity: 0 Timestamp: 5.079 [90 32 00]

Reading from the buffer clears the data. For example, if no more MIDI messages are sent,
and the buffer is reread, midireceive returns an empty MIDI message.

msgs = midireceive(device)

msgs =

 empty MIDI message array

Receive Limited Number of MIDI Messages

Query your system for available output from MIDI devices. Specify that the output of a
MIDI device is connected to the input of your mididevice object.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

device = mididevice('Input','USB MIDI Interface ');

Once your MIDI device object is created, it begins listening to MIDI messages from your
specified device and storing them in a buffer. To get a limited number of MIDI messages
from the buffer, call midireceive and specify the maximum number of messages to
return. In this example, five keys are played on a MIDI device. A maximum of four MIDI
messages are received at each call to midireceive.

4 Classes in Audio Toolbox

4-122

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 36 Velocity: 64 Timestamp: 2929.71 [90 24 40]
 NoteOn Channel: 1 Note: 36 Velocity: 0 Timestamp: 2929.91 [90 24 00]
 NoteOn Channel: 1 Note: 37 Velocity: 64 Timestamp: 2930.43 [90 25 40]
 NoteOn Channel: 1 Note: 37 Velocity: 0 Timestamp: 2930.59 [90 25 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 38 Velocity: 64 Timestamp: 2931.16 [90 26 40]
 NoteOn Channel: 1 Note: 38 Velocity: 0 Timestamp: 2931.32 [90 26 00]
 NoteOn Channel: 1 Note: 39 Velocity: 64 Timestamp: 2931.87 [90 27 40]
 NoteOn Channel: 1 Note: 39 Velocity: 0 Timestamp: 2932.01 [90 27 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 40 Velocity: 64 Timestamp: 2932.52 [90 28 40]
 NoteOn Channel: 1 Note: 40 Velocity: 0 Timestamp: 2932.66 [90 28 00]

Input Arguments
device — Object of mididevice
object of mididevice

Specify device as an object created by mididevice.

maxmsgs — Maximum number of messages to return
positive integer scalar

Maximum number of messages to return, specified as a positive integer scalar.
Data Types: double

Output Arguments
msgs — Object of midimsg
scalar | column vector

 midireceive

4-123

Object of midimsg, returned as a scalar or column vector. The number of MIDI messages
in the mididevice buffer and maxmsgs determine the size of msgs.

See Also
mididevice | mididevinfo | midimsg | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

4 Classes in Audio Toolbox

4-124

https://www.midi.org/

midisend
Send MIDI message to MIDI device

Syntax
midisend(device,msg)
midisend(device,varargin)

Description
midisend(device,msg) sends the MIDI message, msg, to a MIDI device using the MIDI
device interface, device.

midisend(device,varargin) creates MIDI messages using varargin and then sends
the MIDI messages. The varargin syntax is for convenience and includes a call to
midimsg with the call to midisend.

Examples

Send MIDI Messages to Device

Query your system for available MIDI device output ports. Use the availableDevices
struct to specify a valid MIDI device and create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.output(2).ID);

Create a pair of NoteOn messages (to indicate Note On and Note Off) and send them to
your selected MIDI device.

msgs = midimsg('Note',1,48,64,0.25);
midisend(device,msgs)

 midisend

4-125

Define and Send MIDI Messages to Device

midisend enables you to combine the definition and sending of a midimsg into a single
function call. Send middle C on channel 3 with velocity 64.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

midisend(device,'NoteOn',3,60,64)

Input Arguments
device — Object of mididevice
scalar

Specify device as an object created by mididevice.

msg — Object of midimsg
scalar | vector | array

Specify msg as an object created by midimsg.

varargin — Variable number of arguments describing MIDI message
midimsg input arguments

Specify varargin as a valid combination of arguments that can construct a MIDI
message. See midimsg for a description of valid arguments.

4 Classes in Audio Toolbox

4-126

See Also
mididevice | mididevinfo | midimsg | midireceive

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

 midisend

4-127

https://www.midi.org/

audioPlugin class
Base class for audio plugins

Description
audioPlugin is the base class for audio plugins. In your class definition file, you must
subclass your object from this base class or from the audioPluginSource class, which
inherits from audioPlugin. Subclassing enables you to inherit the attributes necessary
to generate plugins and access Audio Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of
your class definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Design an Audio Plugin”.

Methods
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

4 Classes in Audio Toolbox

4-128

Design Valid Audio Plugin

Design a valid basic audio plugin class

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it,
use the generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the
matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin
end

Add a processing function to your plugin class.

All valid audio plugins include a processing function. For basic audio plugins, the
processing function is named process. The processing function is where audio
processing occurs. It always has an output.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample
rate at which the plugin is run. The plugin in this example, simpleStrobe, uses the
sample rate to determine a constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin
 % simpleStrobe Add audio strobe effect
 % Add a strobe effect by gain switching between 0 and 1 in
 % 50 ms increments. Although the input sample rate can change,
 % the strobe period remains constant.

 audioPlugin class

4-129

 %
 % simpleStrobe properties:
 % period - Number of samples between gain switches
 % gain - Gain multiplier, one or zero
 % count - Number of samples since last gain switch
 %
 %
 % simpleStrobe methods:
 % process - Multiply input frame by gain, element by element
 % reset - Reset count and gain to initial conditions
 % and get sample rate

 properties
 Period = 44100*0.05;
 Gain = 1;
 end
 properties (Access = private)
 Count = 1;
 end
 methods
 function out = process(plugin,in)
 for i = 1:size(in,1)
 if plugin.Count == plugin.Period
 plugin.Gain = 1 - plugin.Gain;
 plugin.Count = 1;
 end
 in(i,:) = in(i,:)*plugin.Gain;
 plugin.Count = plugin.Count + 1;
 end
 out = in;
 end
 function reset(plugin)
 plugin.Period = floor(getSampleRate(plugin)*0.05);
 plugin.Count = 1;
 plugin.Gain = 1;
 end

4 Classes in Audio Toolbox

4-130

 end
end

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPluginSource

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

 audioPlugin class

4-131

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax
sampleRate = getSampleRate(myAudioPlugin)

Description
sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at
which the plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample rate.
getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous call
to setSampleRate. If setSampleRate has not been called, getSampleRate returns
the default value, 44100.

Introduced in R2016a

4 Classes in Audio Toolbox

4-132

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run

Syntax
setSampleRate(myAudioPlugin,sampleRate)

Description
setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a
positive real integer. setSampleRate enables the MATLAB environment to mimic
behavior in a digital audio workstation (DAW) environment.

Note A plugin must not call setSampleRate on itself. If the plugin attempts to call
setSampleRate on itself, generateAudioPlugin throws an error.

Introduced in R2016a

 setSampleRate

4-133

audioPluginSource class
Base class for audio source plugins

Description
audioPluginSource is the base class for audio source plugins. Use audio source
plugins to produce audio signals.

To create a valid audio source plugin, in your class definition file, subclass your object
from the audioPluginSource class. Subclassing enables you to inherit the attributes
necessary to generate audio source plugins and access Audio Toolbox functionality. To
inherit from the audioPluginSource base class directly, type this syntax as the first line
of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

Methods
getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

Inherited Methods
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

4 Classes in Audio Toolbox

4-134

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation
(DAW) environment. To validate it, use the validateAudioPlugin function. To
generate it, use the generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

classdef myAudioSourcePlugin < audioPluginSource
end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source
plugins, the processing function is named process. The processing function defines the
audio signal that your plugin outputs. Audio source plugins do not accept audio signals as
input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing output
as a matrix with two columns. These columns correspond to the left and right channels of
a stereo signal. The number of rows in the output matrix correspond to the frame size.

The output frame size must match the frame size of the environment in which the plugin
is run. A DAW environment has variable frame size. To determine the current
environment frame size, call getSamplesPerFrame in the process function.

classdef myAudioSourcePlugin < audioPluginSource
 methods
 function out = process(plugin)
 out = 0.5*randn(getSamplesPerFrame(plugin),2);
 end
 end
end

 audioPluginSource class

4-135

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5 standard
deviation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Design an Audio Plugin”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4 Classes in Audio Toolbox

4-136

getSamplesPerFrame
Class: audioPluginSource

Get frame size returned by the plugin

Syntax
frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description
frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size
at which the plugin is run. frameSize is the number of output samples (rows) that the
current call to the processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts
with the DAW to determine the frame size. Frame size can vary from call to call, as
determined by the DAW environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a
previous call to the setSamplesPerFrame method. If setSamplesPerFrame has not
been called, then getSamplesPerFrame returns the default value, 256.

Note When authoring source plugins in MATLAB, getSamplesPerFrame is valid only
when called in the processing function.

Introduced in R2016a

 getSamplesPerFrame

4-137

setSamplesPerFrame
Class: audioPluginSource

Set frame size returned by the plugin (MATLAB environment only)

Syntax
setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description
setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size
(rows) that the source plugin, myAudioSourcePlugin, must return in subsequent calls
to its processing function. Specify frameSize as a real integer greater than or equal to 0.
setSamplesPerFrame enables the MATLAB environment to mimic behavior in a digital
audio workstation (DAW) environment.

Note Do not use setSamplesPerFrame in a generated plugin. If you call
setSamplesPerFrame in your authored plugin, generateAudioPlugin throws an
error.

Introduced in R2016a

4 Classes in Audio Toolbox

4-138

externalAudioPlugin class
Base class for external audio plugins

Description
externalAudioPlugin is the base class for hosted audio plugins. When you load an
external plugin using loadAudioPlugin, an object of that plugin is created having
externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods
dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

Inherited Methods
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

 externalAudioPlugin class

4-139

Examples

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath)

hostedPlugin =

 VST plugin 'ParametricEQ' 2 in, 2 out

 LowPeakGain: 0 dB
 LowCenterFrequency: 100 Hz
 LowQFactor: 2
 MediumPeakGain: 0 dB
 MediumCenterFrequency: 1000 Hz
 MediumQFactor: 2
 HighPeakGain: 0 dB
 HighCenterFrequency: 10000 Hz
 HighQFactor: 2

Use info to return information about the hosted plugin.

info(hostedPlugin)

ans =

 struct with fields:

 PluginName: 'ParametricEQ'
 Format: 'VST'
 InputChannels: 2
 OutputChannels: 2
 NumParams: 9
 PluginPath: 'E:\jobarchive\Bdsp\2018_07_19_h20m03s12_job916096_pass\matlab\toolbox\audio\samples\ParametricEqualizer.dll'
 VendorName: ''
 VendorVersion: 'V1.0.0'
 UniqueId: 'MWap'

4 Classes in Audio Toolbox

4-140

Use setParameter to change the normalized value of the Medium Center Frequency
parameter to 0.75. Specify the parameter by its index.

setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is
automatically updated. The normalized parameter value generally corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Low Peak Gain: 0.5000 0.000 dB
 2 Low Center Frequency: 0.2330 100.000 Hz
 3 Low Q Factor: 0.2822 2.000
 4 Medium Peak Gain: 0.5000 0.000 dB
 5 Medium Center Frequency: 0.7500 3556.559 Hz
 6 Medium Q Factor: 0.2822 2.000
 7 High Peak Gain: 0.5000 0.000 dB
 8 High Center Frequency: 0.8997 9999.999 Hz
 9 High Q Factor: 0.2822 2.000

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

parameterIndex = 5;
parameterValue = getParameter(hostedPlugin,parameterIndex)

parameterValue =

 0.7500

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

 externalAudioPlugin class

4-141

pluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes
to your audio device. Set the sample rate of the hosted plugin to the sample rate of the
input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the
medium peak gain upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPluginSource

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

4 Classes in Audio Toolbox

4-142

Introduced in R2016b

 externalAudioPlugin class

4-143

dispParameter
Class: externalAudioPlugin

Display information of single or multiple parameters

Syntax
dispParameter(hostedPlugin)
dispParameter(hostedPlugin,parameter)

Description
dispParameter(hostedPlugin) displays all parameters and associated indices,
values, displayed values, and display labels. For example:

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB
 2 Dry: 1.0000 +0.0 dB
 3 1: Enabled: 1.0000 ON
 4 1: Length: 0.0000 0.0 ms
 5 1: Length: 0.0156 4.00 8N
 6 1: Feedback: 0.0000 -inf dB
 7 1: Lowpass: 1.0000 20000 Hz
 8 1: Hipass: 0.0000 0 Hz
 9 1: Resolution: 1.0000 24 bits
 10 1: Stereo width: 1.0000 1.00
 11 1: Volume: 1.0000 +0.0 dB
 12 1: Pan: 0.5000 0.0 %

The Value column corresponds to the normalized parameter value. Generally, the
normalized parameter value represents the position of a UI widget or MIDI controller. The
Display column corresponds to an internal parameter value used for processing. The
Value and Display are related by an unknown mapping that is internal to the hosted
plugin.

4 Classes in Audio Toolbox

4-144

dispParameter(hostedPlugin,parameter) displays a subset of parameters. You can
specify a parameter by its name as a character vector, string, or as a vector of one or
more parameter indices. For example:

• dispParameter(hostedPlugin,'Gain') displays information about the 'Gain'
parameter of hostedPlugin.

• dispParameter(hostedPlugin,[1,3]) displays information about parameters
specified by indices 1 and 3.

Introduced in R2016b

 dispParameter

4-145

getParameter
Class: externalAudioPlugin

Get normalized value and information about parameter

Syntax
value = getParameter(hostedPlugin,parameter)
[value, parameterInformation] = getParameter(hostedPlugin,parameter)

Description
value = getParameter(hostedPlugin,parameter) returns the normalized value of
the parameter of hostedPlugin. You can specify a parameter by its name as a
character vector, string, or by its index. For example:

• getParameter(hostedPlugin,'Gain') returns the normalized value of the hosted
plugin parameter named 'Gain'. If the parameter name is not unique,
getParameter returns an error.

• getParameter(hostedPlugin,2) returns information about the parameter
specified by index 2.

[value, parameterInformation] = getParameter(hostedPlugin,parameter)
returns a structure containing additional information about the specified parameter of the
hosted plugin.

Field Description
DisplayName Display name or prompt of the plugin parameter, returned as a

character vector. The display name is intended for display on the
plugin’s user interface (UI).

4 Classes in Audio Toolbox

4-146

Field Description
DisplayValue Display value of the plugin parameter, returned as a character vector.

The parameter DisplayValue corresponds to the normalized
parameter value by an unknown mapping internal to the hosted
plugin. Generally, the display value reflects the value used internally by
the plugin for processing, while the normalized parameter value
corresponds to the position of a MIDI control or widget on a UI.

Label Label intended for display with DisplayValue on the plugin’s UI,
returned as a character vector. Typical labels include dB and Hz.

Introduced in R2016b

 getParameter

4-147

info
Class: externalAudioPlugin

Get information about hosted plugin

Syntax
pluginInfo = info(hostedPlugin)

Description
pluginInfo = info(hostedPlugin) returns a structure containing information about
the hosted plugin.

Field Description
PluginName Display name of plugin.
Format Software interface. Supported formats include VST, VST3, and AU.
InputChannels Number of channels passed to the processing function of the plugin.
OutputChannel
s

Number of channels returned from the processing function of the
plugin.

NumParams Total number of plugin parameters.
PluginPath Path specified when plugin is loaded using loadAudioPlugin.
VendorName Name of the plugin creator.
VendorVersion Version number. Typically used to track plugin releases.
UniqueID Unique identifier of plugin used for recognition in certain digital audio

workstation (DAW) environments.

Introduced in R2016b

4 Classes in Audio Toolbox

4-148

process
Class: externalAudioPlugin

Process audio stream

Syntax
audioOut = process(hostedPlugin,audioIn)

Description
audioOut = process(hostedPlugin,audioIn) returns an audio signal processed
according to the algorithm and parameters of hostedPlugin. For source plugins, call
process without an audio input. Use info(hostedPlugin) to determine the number of
channels (columns) of the input and output audio signal.

Use setSamplesPerFrame(hostedPlugin) to specify the frame size returned by
hosted source plugins.

Introduced in R2016b

 process

4-149

setParameter
Class: externalAudioPlugin

Set normalized parameter value of hosted plugin

Syntax
setParameter(hostedPlugin,parameter,newValue)

Description
setParameter(hostedPlugin,parameter,newValue) sets the normalized value
corresponding to the parameter of hostedPlugin to newValue. Specify the parameter
by its unique display name or its index. Specify the new normalized parameter value as a
scalar in the range 0–1.

For example, assume hostedPlugin has a parameter with index 3 and a unique display
name, 'Gain'. These commands are identical:

• setParameter(hostedPlugin,'Gain',0.2)
• setParameter(hostedPlugin,3,0.2)

Note A hosted plugin might quantize its parameters. The result of setParameter for
quantized parameters depends on the type of quantization.

Introduced in R2016b

4 Classes in Audio Toolbox

4-150

externalAudioPluginSource class

Base class for external audio source plugins

Description
externalAudioPluginSource is the base class for hosted audio source plugins. When
you load an external plugin using loadAudioPlugin, an object of that plugin is created
having externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source
plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods

Inherited Methods

dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

 externalAudioPluginSource class

4-151

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior”
(MATLAB) in the MATLAB documentation.

Examples

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are using
a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath)

hostedSourcePlugin =

 VST plugin 'oscillator' source, 1 out, 256 samples

 Frequency: 100 Hz
 Amplitude: 1 AU
 DCOffset: 0 AU

Use info to return information about the hosted plugin.

info(hostedSourcePlugin)

ans =

 struct with fields:

 PluginName: 'oscillator'
 Format: 'VST'
 InputChannels: 0
 OutputChannels: 1
 NumParams: 3
 PluginPath: 'E:\jobarchive\Bdoc19a\2018_08_10_h18m20s48_job932282_pass\matlab\toolbox\audio\samples\oscillator.dll'
 VendorName: ''
 VendorVersion: 'V1.0.0'

4 Classes in Audio Toolbox

4-152

 UniqueId: 'MWap'

Use setParameter to change the normalized value of the Frequency parameter to 0.8.
Specify the parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is
automatically updated. Generally, the normalized parameter value corresponds to the
position of a UI widget or MIDI controller. The parameter display value typically reflects
the value used internally by the plugin for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

 Parameter Value Display

 1 Frequency: 0.8000 1741.101 Hz
 2 Amplitude: 0.1000 1.000 AU
 3 DC Offset: 0.5000 0.000 AU

Alternatively, you can use getParameter to return the normalized value of a single
parameter.

getParameter(hostedSourcePlugin,1)

ans =

 0.8000

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using
a Mac, replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

 externalAudioPluginSource class

4-153

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your
audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio
stream loop ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || ...
 (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPlugin

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016b

4 Classes in Audio Toolbox

4-154

Blocks in Audio Toolbox

5

Voice Activity Detector
Detect presence of speech in audio signal
Library: Audio Toolbox / Measurements

Description
The Voice Activity Detector block detects the presence of speech in an audio signal. You
can also use the Voice Activity Detector block to output an estimate of the noise variance
per frequency bin.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
P — Probability that speech is present
scalar | row vector

The block outputs a scalar or row vector with the same number of columns as the input
signal.

This port is unnamed until you select the Output noise variance parameter.

5 Blocks in Audio Toolbox

5-2

Data Types: single | double

N — Estimate of noise variance per frequency bin
column vector | matrix

The block outputs a column vector or a matrix with the same number of columns as the
input signal.

Dependencies

To enable this port, select the Output noise variance parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Domain of the input — Domain of the input
Time (default) | Frequency

Tunable: No

Window — Windowing function applied before FFT
Hann (default) | Chebyshev | Flat Top | Hamming | Kaiser | Rectangular

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No

Dependencies

To enable this parameter, set Domain of the input to Time.

 Voice Activity Detector

5-3

Sidelobe attenuation of the window (dB) — Sidelobe attenuation of the
window (dB)
60 (default) | positive finite scalar

Tunable: No
Dependencies

To enable this parameter, set Domain of the input to Time and Window to Chebyshev
or Kaiser.
Data Types: single | double

Inherit FFT length from input dimensions — Set FFT length to number of
input samples
on (default) | off

Tunable: No
Dependencies

To enable this parameter, set Domain of the input to Time.

FFT length — Number of bins in frequency domain
1024 (default) | positive finite integer

Tunable: No
Dependencies

To enable this parameter, set Domain of the input to Time and clear the Inherit FFT
length from input dimensions parameter.
Data Types: single | double

Probability of transition from a silence frame to a speech frame —
Probability that a speech frame follows a silence frame
0.2 (default) | value in the range [0,1]

Tunable: Yes
Data Types: single | double

Probability of transition from a speech frame to a silence frame —
Probability that a silence frame follows a speech frame
0.1 (default) | value in the range [0,1]

5 Blocks in Audio Toolbox

5-4

Tunable: Yes
Data Types: single | double

Output noise variance — Output estimate of noise variance per frequency bin
off (default) | on

When you select this parameter, an additional output port, N, is added to the block.

Tunable: No

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink® generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

no

Zero-Crossing
Detection

no

 Voice Activity Detector

5-5

Algorithms
The Voice Activity Detector implements the algorithm described in [1].

If Domain of the input is specified as Time, the input signal is windowed and then
converted to the frequency domain according to the Window, Sidelobe attenuation of
the window (dB), and FFT length parameters. If Domain of the input is specified as
Frequency, the input is assumed to be a windowed discrete time Fourier transform
(DTFT) of an audio signal. The signal is then converted to the power domain. Noise
variance is estimated according to [2]. The posterior and prior SNR are estimated
according to the Minimum Mean-Square Error (MMSE) formula described in [3]. A log
likelihood ratio test with a Hidden Markov Model (HMM)-based hang-over scheme is
used, according to [1].

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice

Activity Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and
Minimum Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9,
No. 5, 2001, pp. 504–512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square
Error Short-Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics,
Speech, and Signal Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

5 Blocks in Audio Toolbox

5-6

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
voiceActivityDetector

Introduced in R2018a

 Voice Activity Detector

5-7

Cepstral Feature Extractor
Extract cepstral features from audio segment
Library: Audio Toolbox / Measurements

Description
The Cepstral Feature Extractor block extracts cepstral features from an audio segment.
Cepstral features are commonly used to characterize speech and music signals.

Ports

Input
Port_1 — Audio input to cepstral feature extractor
column vector | matrix

Audio input to the cepstral feature extractor, specified as a column vector or a matrix. If
specified as a matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output
coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is
an N-by-M matrix, N is determined by the values you specify in the Number of
coefficients to return and Log energy usage parameters. M equals the number of
input audio channels.

When the Log energy usage parameter is set to:

5 Blocks in Audio Toolbox

5-8

• Append –– The block prepends the log energy value to the coefficients vector. The
length of the coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value
specified in the Number of coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal.
The length of the coefficients vector is NumCoeffs.

• Ignore –– The block does not calculate or return the log energy.

This port is unnamed until you select Output delta parameter, the Output delta-delta
parameter, or both.
Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a column
vector or a matrix. The delta array is of the same size and data type as the coeffs array.
Dependencies

To enable this port, select the Output delta parameter.
Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a column
vector or a matrix. The deltaDelta array is the same size and data type as the coeffs and
delta arrays.
Dependencies

To enable this port, select the Output delta-delta parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter bank type — Type of filter bank
Mel (default) | Gammatone

 Cepstral Feature Extractor

5-9

Type of filter bank, specified as either Mel or Gammatone:

• Mel –– The block computes the mel frequency cepstral coefficients (MFCC).
• Gammatone –– The block computes the gammatone cepstral coefficients (GTCC).

Tunable: No

Domain of the input signal — Input signal domain
Time (default) | Frequency

Input signal domain, specified as either Time or Frequency.

Tunable: No

Number of coefficients to return — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the
number of valid passbands. The number of valid passbands depends on the type of filter
bank:

• Mel –– The number of valid passbands is defined as sum(κ <= floor(fs/2))-2,
where κ is the number of band edges in the mel filter bank and fs is the sample rate.

• Gammatone –– The number of valid passbands is defined as ceil(hz2erb(R(2))-
hz2erb(R(1))), where R is the frequency range of the gammatone filter bank.

Tunable: No
Data Types: single | double

Inherit FFT length from input dimensions — Inherit FFT length from input
on (default) | off

When you select this parameter, the FFT length is equal to the number of rows in the
input signal.

Tunable: No
Dependencies

To enable this parameter, set Domain of the input signal to Time.

FFTLength — FFT length
[] (default) | positive integer

5 Blocks in Audio Toolbox

5-10

FFT length, specified as a positive integer. The default, [], means that the FFT length is
equal to the number of rows in the input signal.

Tunable: No
Dependencies

To enable this parameter, set Domain of the input signal to Time and select the
Inherit FFT length from input dimensions parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Log energy usage — Specify how the log energy is shown
Append (default) | Replace | Ignore

Specify how the log energy is shown in the coefficients vector output, specified as:

• Append –– The block prepends the log energy to the coefficients vector. The length of
the coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value specified in
the Number of coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal.
The length of the coefficients vector is NumCoeffs.

• Ignore –– The block does not calculate or return the log energy.

Tunable: No

Output delta — Output delta values
off (default) | on

When you select this parameter, an additional output port, delta, is added to the block.
This port outputs the change in coefficients over consecutive calls to the algorithm.

Tunable: No

Output delta-delta — Output delta-delta values
off (default) | on

When you select this parameter, an additional output port, deltaDelta, is added to the
block. This port outputs the change in delta values over consecutive calls to the
algorithm.

Tunable: No

 Cepstral Feature Extractor

5-11

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Advanced Tab

Gammatone frequency range (Hz) — Frequency range of gammatone filter bank
(Hz)
[50 8000] (default) | two-element row vector

Frequency range of the gammatone filter bank in Hz, specified as a positive,
monotonically increasing two-element row vector. The maximum frequency range can be

5 Blocks in Audio Toolbox

5-12

any finite number. The center frequencies of the filter bank are equally spaced across the
frequency range on the ERB scale.

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Gammatone.

Band edges of Mel filter bank (Hz) — Band edges of mel filter bank
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing
row vector in the range [0, ∞). The maximum bandedge frequency can be any finite
number. The number of bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically
thereafter. The default band edges are set as recommended by [1].

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Mel.

Domain for Mel filter bank design — Mel filter bank design domain
Hz (default) | Bin

Mel filter bank design domain, specified as either Hz or Bin. The filterbank is designed as
overlapped triangles with band edges specified by the Band edges of filter bank (Hz)
parameter.

The band edges are specified in Hz. When you set the design domain to:

• Hz –– Filter bank triangles are drawn in Hz and are mapped onto bins.

 Cepstral Feature Extractor

5-13

For details, see [1].
• Bin –– The band edge frequencies in Hz are converted to bins. The filter bank

triangles are drawn symmetrically in bins.

5 Blocks in Audio Toolbox

5-14

For details, see [2].

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Mel.

 Cepstral Feature Extractor

5-15

Filter bank normalization — Normalize filter bank
Bandwidth (default) | Area | None

Normalization technique used to normalize the weights of the filter bank, specified as:

• Bandwidth –– The weights of each bandpass filter are normalized by the
corresponding bandwidth of the filter.

• Area –– The weights of each bandpass filter are normalized by the corresponding area
of the bandpass filter.

• None –– The weights of the filter are not normalized.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

no

Zero-Crossing
Detection

no

Algorithms
Auditory Cepstrum Coefficients
Auditory cepstrum coefficients are popular features extracted from speech signals for use
in recognition tasks. In the source-filter model of speech, cepstral coefficients are
understood to represent the filter (vocal tract). The vocal tract frequency response is
relatively smooth, whereas the source of voiced speech can be modeled as an impulse
train. As a result, the vocal tract can be estimated by the spectral envelope of a speech
segment.

5 Blocks in Audio Toolbox

5-16

The motivating idea of cepstral coefficients is to compress information about the vocal
tract (smoothed spectrum) into a small number of coefficients based on an understanding
of the cochlea. Although there is no hard standard for calculating the coefficients, the
basic steps are outlined by the diagram.

Two popular implementations of the filter bank are the mel filter bank and the
gammatone filter bank.

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and
logarithmically spaces the remaining filters.

 Cepstral Feature Extractor

5-17

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on
the ERB scale between 50 and 8000 Hz. The filter bank is designed by
gammatoneFilterBank.

5 Blocks in Audio Toolbox

5-18

Log Energy
If the input (x) is a time-domain signal, the log energy is computed using the following
equation:

logE = log(sum(x2))

If the input (x) is a frequency-domain signal, the log energy is computed using the
following equation:

logE = log sum x 2 /FFTLength

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

 Cepstral Feature Extractor

5-19

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Voice Activity Detector | cepstralFeatureExtractor | mfcc | pitch |
voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

5 Blocks in Audio Toolbox

5-20

Audio Device Reader
Record from sound card
Library: Audio Toolbox / Sources

Description
The Audio Device Reader block reads audio samples using your computer's audio device.
The Audio Device Reader block specifies the driver, the device and its attributes, and the
data type and size output from your Audio Device Reader block.

Ports

Output
A — Output signal
scalar | vector | matrix

The output of the Audio Device Reader block is determined by the block’s parameters. If
the block output is a matrix, the columns correspond to independent channels.
Data Types: single | double | int16 | int32 | uint8

 Audio Device Reader

5-21

O — Number of samples overrun
scalar

This port outputs the number of samples overrun while acquiring a frame of data (one
output matrix).

Dependencies

To enable this port, select the Output number of samples overrun parameter.
Data Types: uint32

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the value specified by the Samples per frame parameter. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI
drivers, set Sample rate (Hz) to a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio input configuration
button

5 Blocks in Audio Toolbox

5-22

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum input channels for your configuration. For example:

Sample rate (Hz) — Sample rate your device uses to acquire audio data
44100 (default) | integer

The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels — Number of channels acquired by your audio device
1 (default) | integer

The number of input channels is also the number of channels (matrix columns) output by
the Audio Device Reader block.

Dependencies

To specify which input channels your audio device acquires, on the Advanced tab, select
the Use default channel mapping parameter.

Samples per frame — Frame size read from audio device
1024 (default) | integer

Samples per frame is also the device buffer size, and the frame size (number of matrix
rows) output by the Audio Device Reader block.

Advanced Tab

Device bit depth — Data type used by device to acquire audio data
16-bit integer (default) | 8-bit integer | 16-bit integer | 24-bit integer |
32-bit integer

Use default channel mapping — Toggle channel mapping source
on (default) | off

 Audio Device Reader

5-23

When you select this parameter, the block uses the default mapping between the sound
card’s input channels and the matrix columns output by this block. When you clear this
parameter, you specify the mapping in Device input channels.

Device input channels — Specify nondefault channel mapping
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault map of device channels and matrix output by the Audio Device Reader block,
specified as a scalar or vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.
• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

Dependencies

To specify a nondefault mapping, clear the Use default mapping between sound
card’s input channels and columns of output of this block parameter.

Output number of samples overrun — Specify additional output port for
number of samples overrun
off (default) | on

When you select this parameter, an additional output port, O, is added to the block. The O
port outputs the number of samples overrun while acquiring a frame of data (one output
matrix).

Output data type — Data type output from block
double (default) | single | int32 | int16 | uint8

5 Blocks in Audio Toolbox

5-24

Block Characteristics
Data Types double | integera | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

no

Zero-Crossing
Detection

no

a. Supports 16- and 32-bit signed and 8-bit unsigned integers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated
from this object and all the relevant files in a compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project in another development environment
where MATLAB is not installed. For more details, see “Run Audio I/O Features Outside
MATLAB and Simulink”.

See Also
System Objects
audioDeviceReader | audioDeviceWriter

Blocks
Audio Device Writer

 Audio Device Reader

5-25

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-26

Audio Device Writer
Play to sound card
Library: Audio Toolbox / Sinks

DSP System Toolbox / Sinks

Description
The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device
attributes such as sample rate and bit depth.

Ports

Input
Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block
clips values outside the range [–1, 1]. For other data types, the allowed input range is
[min, max] of the specified data type.
Data Types: single | double | int16 | int32 | uint8

 Audio Device Writer

5-27

Output
Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrun while writing a frame of data (one
input matrix).

Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver
option, install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound
card buffer size to the frame size (number of rows) input to the Audio Device Writer
block. See the documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI
drivers, supply an audio stream with a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA
driver. Mac machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio Toolbox. If the toolbox is not
installed, specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default)

5 Blocks in Audio Toolbox

5-28

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your
audio device, and the maximum output channels for your configuration. For example:

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Sample rate (Hz).

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog
conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type
specified by this parameter.

Note To specify a nondefault Device bit depth, you must install Audio Toolbox. If the
toolbox is not installed, specifying a nondefault Device bit depth returns an error.

 Audio Device Writer

5-29

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns of
the matrix input to this block and the channels of your device. When you clear this
parameter, you specify the mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block
and channels of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

Note To selectively map between columns of the input matrix and your sound card's
output channels, you must install Audio Toolbox. If the toolbox is not installed, specifying
nondefault values for Device output channels returns an error.

Dependencies

To enable this parameter, clear the Use default mapping between columns of input
of this block and sound card’s output channels parameter.

Output number of samples underrun — Specify output port for number of
samples underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs the
number of samples underrun while writing a frame of data (one input matrix).

5 Blocks in Audio Toolbox

5-30

Block Characteristics
Data Types double | integera | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

a. Supports 16- and 32-bit signed and 8-bit unsigned integers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following code generation limitations apply:

• Host computer only. Excludes Simulink Desktop Real-Time™ code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code
generated from this block and all the relevant files in a compressed zip file. Using this
zip file, you can relocate, unpack, and rebuild your project in another development
environment where MATLAB is not installed. For more details, see “Run Audio I/O
Features Outside MATLAB and Simulink”.

See Also
Audio Device Reader | Binary File Reader | audioDeviceReader | audioDeviceWriter

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”

 Audio Device Writer

5-31

“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-32

Compressor
Dynamic range compressor
Library: Audio Toolbox / Dynamic Range Control

Description
The Compressor block performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that
cross a given threshold. The block uses specified attack and release times to achieve a
smooth applied gain curve.

Ports

Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

 Compressor

5-33

R — Ratio
scalar

Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

Output
Y — Output signal
matrix

5 Blocks in Audio Toolbox

5-34

The Compressor block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Ratio — Compression ratio
5 (default) | scalar in the range 1 to 50 inclusive

Compression ratio is the input/output ratio for signals that overshoot the operation
threshold.

 Compressor

5-35

Assuming a hard knee characteristic and a steady-state input such that x[n] dB >
Threshold (dB), the compression ratio is defined as R = (x[n] − T)

(y[n] − T) , where

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in compression characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic
range compressor
button

The plot is updated automatically when parameters of the Compressor block change.

5 Blocks in Audio Toolbox

5-36

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the compressor gain takes to rise from 10% to 90% of its final
value when the input goes above the threshold. The Attack time (s) parameter smooths
the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the compressor gain takes to drop from 90% to 10% of its final
value when the input goes below the threshold. The Release time (s) parameter smooths
the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB)
parameter.

• Auto –– Make-up gain is applied at the output of the Compressor block such that a
steady-state 0 dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during compression. It is applied at the output of
the Compressor block.

Tunable: Yes

 Compressor

5-37

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G
port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

5 Blocks in Audio Toolbox

5-38

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The Compressor block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

 Compressor

5-39

2 xdB[n] passes through the gain computer. The gain computer uses the static
compression characteristic of the Compressor block to attenuate gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the compression ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .
4 gc[n] is smoothed using specified attack and release time parameters:

gs[n] =
αAgs[n− 1] + (1 − αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1 − αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

5 Blocks in Audio Toolbox

5-40

T A is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or the Input
sample rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative
of the computed gain for a 0 dB input:

M = −xsc xdB = 0 .

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB), Ratio, and Knee
width (dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M
7 The calculated gain in dB, gdB[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

8 The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Compressor

5-41

See Also
Blocks
Expander | Limiter | Noise Gate

System Objects
compressor

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-42

Crossover Filter
Audio crossover filter
Library: Audio Toolbox / Filters

Description
The Crossover Filter block implements an audio crossover filter, which is used to split an
audio signal into two or more frequency bands. Crossover filters are multiband filters
whose overall magnitude frequency response is flat.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
Y1 — Output signal
matrix

Available if Number of crossovers is set to 1, 2, 3, or 4. Port Y1 always corresponds to a
lowpass filter.
Data Types: single | double

 Crossover Filter

5-43

Y2 — Output signal
matrix

Depending on the number of crossovers specified, port Y2 outputs the original audio
signal passed through a bandpass or highpass filter.

Available if Number of crossovers is set to 1, 2, 3, or 4.
Data Types: single | double

Y3 — Output signal
matrix

Depending on the number of crossovers specified, port Y3 corresponds to a bandpass or
highpass filter of the original audio signal.

Available if Number of crossovers is set to 2, 3, or 4.
Data Types: single | double

Y4 — Output signal
matrix

Available if Number of crossovers is set to 3 or 4.
Data Types: single | double

Y5 — Output signal
matrix

Available if Number of crossovers is set to 4.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Number of crossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

If you specify multiple crossovers, the corresponding Crossover frequency (Hz) and
Crossover order parameters populate in the dialog box automatically.

5 Blocks in Audio Toolbox

5-44

The number of bands output by the Crossover Filter block is one more than the Number
of crossovers.

Number of Crossovers Number of Bands Output
1 two bands
2 three bands
3 four bands
4 five bands

Tunable: No

Crossover frequency (Hz) — Intersections of magnitude response bands
100 (default) | real scalar in the range 20 to 20000

Crossover frequencies are the intersections of magnitude response bands of the
individual two-band crossover filters used in the multiband crossover filter.

Tunable: Yes

Crossover order — Order of individual crossover filters
2 (default) | 1 | 3 | 4 | 5 | 6 | 7 | 8

The crossover filter order relates to the crossover filter slope in dB/octave: slope = N × 6,
where N is the crossover order.

Tunable: Yes

View filter response — Open plot of magnitude response of each filter band
button

The plot is updated automatically when parameters of the Crossover Filter block change.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

 Crossover Filter

5-45

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

5 Blocks in Audio Toolbox

5-46

Algorithms
The Crossover Filter block is implemented as a binary tree of crossover pairs with
additional phase-compensating sections [1]. Odd-order crossovers are implemented with
Butterworth filters, while even-order crossovers are implemented with cascaded
Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair
Odd-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed
second-order sections. The shared cutoff frequency used in their design corresponds to
the crossover of the resulting bands.

Even-Order Crossover Pair
Even-order two-band (one crossover) filters are implemented as parallel complementary
highpass and lowpass filters.

 Crossover Filter

5-47

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter.
The filters are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches
of your crossover pair are in-phase.

Even-Order Three-Band Filter
Even-order three-band (two crossovers) filters are implemented as parallel
complementary highpass and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of
the pattern developed for even-order and odd-order crossovers and the tree structure
specified for three-band (two crossover) filters.

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems."

Journal of Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

5 Blocks in Audio Toolbox

5-48

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
System Objects
crossoverFilter

Topics
“Multiband Dynamic Range Compression”

Introduced in R2016a

 Crossover Filter

5-49

Expander
Dynamic range expander
Library: Audio Toolbox / Dynamic Range Control

Description
The Expander block performs dynamic range expansion independently across each input
channel. Dynamic range expansion attenuates the volume of quiet sounds below a given
threshold. The block uses specified attack, release, and hold times to achieve a smooth
applied gain curve.

Ports

Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

R — Ratio
scalar

Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0
parameter.
Data Types: single | double

5 Blocks in Audio Toolbox

5-50

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

HT — Hold time (s)
scalar
Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0
parameter.

 Expander

5-51

Data Types: single | double

Output
Y — Output signal
matrix

The Expander block outputs a signal with the same data type as the input signal. The size
of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix
Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Ratio — Expansion ratio
5 (default) | scalar in the range 1 to 50 inclusive

Expansion ratio is the input/output ratio for signals that undershoot the operation
threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB <
Threshold (dB), the expansion ratio is defined as R = (y[n] − T)

(x[n] − T) , where

5 Blocks in Audio Toolbox

5-52

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1 − R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

 Expander

5-53

View static characteristic — Open static characteristic plot of dynamic
range expander
button

The plot is updated automatically when parameters of the Expander block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the expander gain takes to rise from 10% to 90% of its final value
when the input goes below the threshold. The Attack time (s) parameter smooths the
applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the expander gain takes to drop from 90% to 10% of its final
value when the input goes above the threshold. The Release time (s) parameter smooths
the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4 inclusive

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the operation
threshold.

To specify Hold time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

5 Blocks in Audio Toolbox

5-54

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G
port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

 Expander

5-55

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The Expander block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static

characteristic properties of the dynamic range expander to attenuate gain that is
below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

5 Blocks in Audio Toolbox

5-56

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1 − R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the expansion ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T
3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .
4 gc[n] is smoothed using specified attack, release, and hold time parameters:

gs[n] =

αAgs[n− 1] + (1 − αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1 − αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

CA and CR are hold counters for attack and release, respectively. The limit, TH, is
determined by the Hold time (s) parameter.

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. T R is the
release time period, specified by the Release time (s) parameter. Fs is the input

 Expander

5-57

sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20 .

6 The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Compressor | Limiter | Noise Gate

System Objects
expander

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-58

Graphic EQ
Standards-based graphic equalizer
Library: Audio Toolbox / Filters

Description
The Graphic EQ block implements a graphic equalizer that can tune the gain on individual
octave or fractional octave bands. The block filters the data independently across each
input channel over time using the filter specifications. Center frequencies for bands in the
graphic equalizer are based on the ANSI S1.11-2004 standard.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

Data Types: single | double

Output
Port_1 — Output signal
matrix

The Graphic EQ block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

 Graphic EQ

5-59

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector input.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

EQ Order — Order of individual equalizer bands
2 (default) | positive even integer

Specify the order of individual equalizer bands as a positive even integer. All equalizer
bands have the same order.

Tunable: Yes

Bandwidth — Filter bandwidth (octaves)
1 octave (default) | 2/3 octave | 1/3 octave

Specify the filter bandwidth as 1 octave, 2/3 octave, or 1/3 octave.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer.
The ISO 266:1997(E) standard specifies corresponding preferred frequencies for labeling
purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981
7943 15849

Edge frequencies 22 45 89 178 355 708 1413 2818
5623 1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000
4000 8000 16000

2/3-Octave Bandwidth

5 Blocks in Audio Toolbox

5-60

Center frequencies 25 40 63 100 158 251 398 631 1000
1585 2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794
1259 1995 3162 5012 7943 12589
19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000
1600 2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200
251 316 398 501 631 794 1000 1259
1585 1995 2512 3162 3981 5012
6310 7943 10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178
224 282 355 447 562 708 891 1122
1413 1778 2239 2818 3548 4467
5623 7079 8913 11220 14125 17783
22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160
200 250 315 400 500 630 800 1000
1250 1600 2000 2500 3150 4000
5000 6300 8000 10000 12500 16000
20000

Tunable: Yes

Structure — Type of implementation
Cascade (default) | Parallel

Specify the type of implementation as Cascade or Parallel. See “Algorithms” on page
5-63 and “Graphic Equalization” for information about these implementation structures.

Tunable: No

Gains — Gain of each octave or fractional octave band (dB)
0 | scalar

Specify the gain of each octave or fractional octave band in dB. The number and position
of filters in the graphic equalizer depends on the Bandwidth on page 5-0 parameter.

 Graphic EQ

5-61

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in Input sample rate (Hz) on
page 5-0 .

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input on page 5-0
parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster than
Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single

5 Blocks in Audio Toolbox

5-62

Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The implementation of your graphic equalizer depends on the Structure on page 5-0
parameter. See “Graphic Equalization” for a discussion of the pros and cons of the
parallel and cascade implementations. Refer to the following sections to understand how
these algorithms are implemented in Audio Toolbox.

 Graphic EQ

5-63

Parallel Structure

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter
design method and spaces them on the spectrum according to the ANSI S1.11-2004
standard.

If you set the Input sample rate (Hz) parameter so that the Nyquist frequency (Input
sample rate (Hz)/2) is less than the final bandpass edge defined by the ANSI
S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the
Nyquist frequency.

• The final filter is implemented as a highpass filter designed by the designParamEQ
function.

5 Blocks in Audio Toolbox

5-64

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and Input sample rate (Hz) parameters.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding
element of the Gains parameter.

3 The branches are summed and the output signal is returned.

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

Gain Setting

If the EQ Order on page 5-0 parameter is set to 2, then a gain correction is calculated
according to [1]. The gain correction is independent of the requested gains. The gain

 Graphic EQ

5-65

correction is recomputed during the real-time processing only if the Input sample rate
(Hz) parameter is modified.

If the EQ Order parameter is not set to 2, no gain correction is applied and the requested
gains are passed on to the multibandParametricEQ object.

Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the
specified Bandwidth and Input sample rate (Hz) parameters.

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic

Equalizer with Accurate Frequency Response Control." Presented at the 139th
Convention of the AES, New York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies.
ISO 266:1997(E). Second Edition. 1997.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Parametric EQ | designParamEQ | designShelvingEQ | designVarSlopeFilter |
graphicEQ | multibandParametricEQ

Topics
“Graphic Equalization”

5 Blocks in Audio Toolbox

5-66

“Equalization”

Introduced in R2017b

 Graphic EQ

5-67

Limiter
Dynamic range limiter
Library: Audio Toolbox / Dynamic Range Control

Description
The Limiter block performs dynamic range limiting independently across each input
channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. The block uses specified attack and release times to achieve a smooth applied
gain curve.

Ports

Input
x — Input signal
1-D vector | matrix

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

5 Blocks in Audio Toolbox

5-68

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-
0 parameter.
Data Types: single | double

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

Output
Y — Output signal
matrix

The Limiter block outputs a signal with the same data type as the input signal. The size of
the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.

 Limiter

5-69

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Knee width (dB) — Transition area in the limiter characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.

5 Blocks in Audio Toolbox

5-70

• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic
range limiter
button

The plot is updated automatically when parameters of the Limiter block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the limiter gain takes to rise from 10% to 90% of its final value
when the input goes above the threshold. The Attack time (s) parameter smooths the
applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the limiter gain takes to drop from 90% to 10% of its final value
when the input goes below the threshold. The Release time (s) parameter smooths the
applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

 Limiter

5-71

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB)
parameter.

• Auto –– Make-up gain is applied at the output of the Limiter block such that a steady-
state 0 dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during limiting. It is applied at the output of the
Limiter block.

Tunable: Yes

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, specify the sample rate in the Input sample rate (Hz)
parameter.

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

5 Blocks in Audio Toolbox

5-72

When you select this parameter, an additional output port, G, is added to the block. The G
port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The Limiter block processes a signal frame by frame and element by element.

 Limiter

5-73

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static

characteristic properties of the dynamic range limiter to brickwall gain that is above
the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static
characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n] − xdB[n] .

5 Blocks in Audio Toolbox

5-74

4 gc[n] is smoothed using specified attack and release time parameters:

gs[n] =
αAgs[n− 1] + (1 − αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1 − αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. TR is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

5 If the Make-up gain (dB) parameter is set to Auto, the make-up gain is calculated
as the negative of the computed gain for a 0 dB input:

M = − xsc(xdB = 0)

Given a steady-state input of 0 dB, this configuration achieves a steady-state output
of 0 dB. The make-up gain is determined by the Threshold (dB) and Knee width
(dB) parameters. It does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M
7 The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

8 The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

 Limiter

5-75

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Compressor | Expander | Noise Gate

System Objects
limiter

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-76

Loudness Meter
Standard-compliant loudness measurements
Library: Audio Toolbox / Measurements

Description
The Loudness Meter block measures the loudness and true-peak of an audio signal based
on EBU R 128 and ITU-R BS.1770-4 standards.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel. If you
use the default Channel weights, specify the input channels in order: [Left, Right,
Center, Left surround, Right surround].

• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
M — Momentary loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

 Loudness Meter

5-77

S — Short-term loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the
input signal.
Data Types: single | double

TP — True-peak value
real scalar

The block outputs a real scalar with the same data type as the input signal.

Dependencies

To enable this port, select the Output true-peak value parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Channel weights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

The number of elements of the row vector must be equal to or greater than the number of
input channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default
channel weights, specify the input to the Loudness Meter block as a matrix whose
columns correspond to channels in this order: [Left, Right, Center, Left surround, Right
surround].

It is a best practice to specify the channel weights in order: [Left, Right, Center, Left
surround, Right surround].

Tunable: Yes

Use relative scale for loudness measurements — Specify block to output
loudness measurements relative to target level
off (default) | on

5 Blocks in Audio Toolbox

5-78

• On — The loudness measurements are relative to the value specified by Target
loudness level (LUFS). The output of the block is returned in loudness units (LU).

• Off — The loudness measurements are absolute, and returned in loudness units full
scale (LUFS).

Tunable: No

Target loudness level (LUFS) — Reference level for relative loudness
measurements
–23 (default) | real scalar

For example, if the Target loudness level (LUFS) is –23, then a loudness value of –24
LUFS is reported as –1 LU.

Tunable: Yes

Dependencies

To enable this parameter, select the Use relative scale for loudness measurements
parameter.

Output true-peak value — Add output port for true-peak value
off (default) | on

When you select this parameter, an additional output port, TP, is added to the block. The
TP port outputs the true-peak value of the input frame.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

 Loudness Meter

5-79

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The Loudness Meter block calculates the momentary loudness, short-term loudness, and
true-peak value of an audio signal. You can specify any number of channels and
nondefault channel weights used for loudness measurements. The block algorithm is
described for the general case of n channels and default channel weights.

5 Blocks in Audio Toolbox

5-80

Loudness Measurements
The input channels, x, pass through a K-weighted filter implemented using the algorithm
of the Weighting Filter block. The K-weighted filter shapes the frequency spectrum to
reflect perceived loudness.

Momentary Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed value for momentary loudness. If enough
samples have been collected, then the power (mean square) of each segment of the K-
weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.

 Loudness Meter

5-81

mL is the momentary loudness returned by your Loudness Meter block.

Short-Term Loudness

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second
overlap. If the required number of samples have not been collected yet, the Loudness
Meter block returns the last computed values for short-term loudness and loudness
range. If enough samples have been collected, then the power (mean square) of each
K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c LUFS

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your Loudness Meter block.

True-Peak
The true-peak measurement considers only the current input frame of a call to your
loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input
sample rate determines the exact oversampling. An input sample rate below 750 Hz
is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32

5 Blocks in Audio Toolbox

5-82

Input Sample Rate (kHz) Upsample Factor
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase
length of 12 and stopband attenuation of 80 dB. The filter design uses
designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to

Measure Audio Programme Loudness and True-Peak Audio Level. ITU-R
BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level
of Audio Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to
Supplement EBU R 128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Loudness Meter

5-83

See Also
Functions
integratedLoudness

System Objects
loudnessMeter

Introduced in R2016b

5 Blocks in Audio Toolbox

5-84

MIDI Controls
Output values from controls on MIDI control surface
Library: Audio Toolbox / Sources

DSP System Toolbox / Sources

Description
The MIDI Controls block outputs values from controls on a MIDI control surface in real
time. Use the MIDI Controls block to interact with your audio processing model.

The MIDI Controls block combines the functionality of the general MIDI functions in
MATLAB: midicontrols, midiread, midisync. Use the MATLAB midiid command to
discover MIDI device names or MIDI device control numbers.

Ports

Output
Port_1 — Output signal
matrix

The output size of the MIDI Controls block is determined by the MIDI controls and
MIDI control numbers parameters.

The output data type is determined by the Output mode parameter.

Data Type Output Mode
double Normalized (0-1)
uint8 RAW MIDI (0-127)

Data Types: double | uint8

 MIDI Controls

5-85

Parameters
MIDI device — MIDI control surface your block listens to
Default (default) | Specify other

To set the default MIDI device, use the setpref function. For example, if the device is
named BCF2000, at the MATLAB command line, enter:

setpref('midi','DefaultDevice','BCF2000');

MIDI device name — Device name of MIDI control surface your block listens to
character vector

The MIDI device name is assigned by the device manufacturer or host operating system,
and specified as a character vector. Use midiid to interactively identify your MIDI
device.

To enable this parameter, set MIDI device to Specify other.

MIDI controls — Specify if block responds to all controllers or specific
controllers on MIDI surface
Respond to any control (default) | Respond to specified controls

This parameter also determines the size of the block output port. If you choose Respond
to any control, then the block output is a scalar corresponding to the value of the
most recently manipulated control.

MIDI control numbers — Control numbers associated with MIDI surface
controllers that your block responds to
0 (default) | integer | array of integers

Use midiid to interactively identify the control numbers of your MIDI device. This
parameter is available when you set MIDI controls to Respond to specified
controls.

Initial values — Control numbers associated with MIDI surface controllers
that your block responds to
0 (default) | scalar | array

If you specify Initial values as a scalar, all controls specified by MIDI control numbers
are assigned that value.

5 Blocks in Audio Toolbox

5-86

If you specify Initial values as an array, the array must be the same size as MIDI
control numbers.

Send initial values to device at start — Synchronize MIDI surface with
values specified initial values
off (default) | on

Select this parameter to synchronize a MIDI device with values specified by the Initial
values when simulation starts. If your MIDI device can receive and respond to messages,
it adjusts its controls as specified. This parameter is valid only when MIDI controls is set
to Respond to specified controls.

Many MIDI devices are not bidirectional. Selecting this parameter with a unidirectional
device has no effect. The MIDI Controls block cannot tell whether a value is successfully
sent to a device or even whether the device is bidirectional. If sending a value fails, no
errors or warnings are generated.

Output Mode — Output mode for MIDI control value
Normalized (0-1) (default) | RAW MIDI (0-127)

Block Characteristics
Data Types double | integer
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

no

Zero-Crossing
Detection

no

 MIDI Controls

5-87

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated
from this object and all the relevant files in a compressed zip file. Using this zip file, you
can relocate, unpack, and rebuild your project in another development environment
where MATLAB is not installed. For more details, see “Run Audio I/O Features Outside
MATLAB and Simulink”.

See Also
Functions
midicontrols | midiid | midiread | midisync

Topics
“MIDI Control Surface Interface”

5 Blocks in Audio Toolbox

5-88

Noise Gate
Dynamic range gate
Library: Audio Toolbox / Dynamic Range Control

Description
The Noise Gate block performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. The block
uses specified attack, release, and hold times to achieve a smooth applied gain curve.

Ports

Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-
0 parameter.
Data Types: single | double

 Noise Gate

5-89

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-
0 parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-
0 parameter.
Data Types: single | double

HT — Hold time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0
parameter.
Data Types: single | double

Output
Y — Output signal
matrix

The Noise Gate block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.

5 Blocks in Audio Toolbox

5-90

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic
range gate
button

The plot is updated automatically when parameters of the Noise Gate block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the applied gain takes to rise from 10% to 90% of its final value
when the input goes below the threshold. The Attack time (s) parameter smooths the
applied gain curve.

 Noise Gate

5-91

To specify Attack time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the applied gain takes to drop from 90% to 10% of its final value
when the input goes above the threshold. The Release time (s) parameter smooths the
applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period in which the applied gain is held constant before it starts moving
toward its steady-state value. Hold time begins when the input level crosses the operation
threshold.

To specify Hold time (s) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | scalar

Tunable: Yes

5 Blocks in Audio Toolbox

5-92

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G
port outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has a simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

 Noise Gate

5-93

Zero-Crossing
Detection

no

Algorithms
The Noise Gate block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n]
2 xa[n] passes through the gain computer. The gain computer uses the static

characteristic properties of the dynamic range gate to apply a brickwall gain for
signal below the threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

Tlin is the threshold property converted to a linear domain:

Tlin = 10
TdB 20 .

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time
parameters:

5 Blocks in Audio Toolbox

5-94

gs[n] =

αAgs[n− 1] + (1 − αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1 − αR)gc[n]
gs[n− 1]

if CA > TH & gc[n] ≤ gs[n− 1]
if CA ≤ TH

if CR > TH & gc[n] > gs[n− 1]
if CR ≤ TH

CA and CR are hold counters for attack and release, respectively. The limit, TH, is
determined by the Hold time (s) parameter.

The attack time coefficient, αA, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR, is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. T R is the
release time period, specified by the Release time (s) parameter. Fs is the input
sampling rate, specified by the Inherit sample rate from input or Input sample
rate (Hz) parameter.

4 The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering
Society. Vol. 60, Issue 6, 2012, pp. 399–408.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Noise Gate

5-95

See Also
Blocks
Compressor | Expander | Limiter

System Objects
noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks in Audio Toolbox

5-96

Octave Filter
Octave-band and fractional octave-band filter
Library: Audio Toolbox / Filters

Description
The Octave Filter block performs octave-band or fractional octave-band filtering
independently across each input channel. An octave-band is a frequency band where the
highest frequency is twice the lowest frequency. Octave-band and fractional octave-band
filters are commonly used to mimic how humans perceive loudness. Octave filters are best
understood when viewed on a logarithmic scale, which models how the human ear
weights the spectrum.

Ports
Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

CF — Center frequency (Hz)
scalar in the range 3 to 22,000 inclusive
Dependencies

To enable this port, select Specify from input port for the “Center frequency (Hz)” on
page 5-0 parameter.

 Octave Filter

5-97

Data Types: single | double

Output
Port_1 — Output signal
matrix

The Octave Filter block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of octave filter
6 (default) | even integer

Tunable: No

Center frequency (Hz) — Center frequency of octave filter
1000 (default) | scalar in the range 3 to 22,000 inclusive

• The maximum center frequency is the value that causes the upper band edge to be
equal to the Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be
equal to 1 Hz. Frequencies below this value are quantized to 1 Hz.

To specify Center frequency (Hz) from an input port, select Specify from input port
for the parameter.

Tunable: Yes

5 Blocks in Audio Toolbox

5-98

Bandwidth — Filter bandwidth in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12
octave | 1/24 octave | 1/48 octave

Tunable: Yes

Oversample the input by 2 for this filter — Oversample toggle
off (default) | on

• off –– The Octave Filter block runs at the input sample rate.
• on –– The Octave Filter block runs at two times the input sample rate. Oversampling

minimizes the frequency warping effects introduced by the bilinear transformation. An
FIR halfband interpolator implements oversampling before octave filtering. A halfband
decimator reduces the sample rate back the input sampling rate after octave filtering.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate the model using generated C code. The first time you
run a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is comparable to
Interpreted execution.

 Octave Filter

5-99

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed than Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Create a mask for filter response visualization
No mask (default) | Class 0 | Class 1 | Class 2

The mask attenuation limits are defined in the ANSI S1.11-2004 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

5 Blocks in Audio Toolbox

5-100

Definitions

Band Edge
A band edge frequency refers to the lower or upper edge of the passband of a bandpass
filter.

Center Frequency of Octave Filter
The center frequency of an octave filter is the geometric mean of the lower- and upper-
band edge frequencies.

Algorithms

Octave Bandwidth to Band Edge Conversion
The Octave Filter block uses the specified center frequency and filter bandwidth in
octaves to determine the normalized band edges [2].

First the block computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

• fc is the normalized center frequency specified by the Center frequency (Hz)
parameter.

• b is the octave bandwidth specified by the Bandwidth parameter. For example, if
Bandwidth is specified as 1/3 octave, the value of b is 3.

• G is a conversion constant:

G = 103 10 .

 Octave Filter

5-101

Digital Filter Design
The Octave Filter block implements a higher-order digital bandpass filter design method
as specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass
analog prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) , where:

• Hi(s) = 1

1 − 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

• θi = π
2N N − 1 + 2i , i = 1, 2, ..., N, ..., 2N

N is the filter order specified by the Filter order parameter.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of

the bilinear transformation:

s = 1 − cz−1 + z−2

1 − z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

5 Blocks in Audio Toolbox

5-102

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb
3 The analog prototype is evaluated:

Hi(z) = 1

1 − 2 s
Ω0

cosθi + s2

Ω0
2 s = 1 − 2cz−1 + z−2

1 − z−2

Because s is second-order in z, the bandpass version of the bilinear transformation is
fourth-order in z.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ:

Prentice Hall, 2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-
Band and Fractional-Octave-Band Analog and Digital Filters: ANSI S1.11-2004.
Melville, NY: Acoustical Society of America, 2009.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
System Objects
octaveFilter | weightingFilter

Blocks
Weighting Filter

 Octave Filter

5-103

Introduced in R2016b

5 Blocks in Audio Toolbox

5-104

Parametric EQ
Second-order parametric equalizer filter
Library: Audio Toolbox / Filters

Description
The Parametric EQ block filters each channel of the input signal over time using a
specified center frequency, bandwidth, and peak (dip) gain. This block offers tunable filter
design parameters, which enable you to tune the filter characteristics while the
simulation is running. The filter is designed using designParamEQ and implemented
using dsp.BiquadFilter.

This block supports variable-size input, enabling you to change the channel length during
simulation. To enable variable-size input, clear the Inherit sample rate from input
parameter. The number of channels must remain constant.

Ports

Input
x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

Fc — Center frequency (Hz)
scalar

 Parametric EQ

5-105

Specify the center frequency as a positive scalar that is less than half the sample rate of
the input signal.

Dependencies

To enable this port, select Specify from input port for the Center Frequency (Hz)
parameter.
Data Types: single | double

BW — Bandwidth (Hz)
scalar

Specify the filter bandwidth as a positive scalar that is less than or equal to half the
sample rate of the input signal and 20 kHz.

Dependencies

To enable this port, select Bandwidth and Center Frequency for the Filter
specification and Specify from input port for the Filter Bandwidth (Hz) parameter.
Data Types: single | double

GdB — Peak or dip gain (dB)
scalar

Specify the peak or dip gain in dB as a scalar.

Dependencies

To enable this port, select Specify from input port for the Peak Gain (dB) parameter.
Data Types: single | double

Q — Quality factor
scalar

Specify the quality factor as a positive scalar.

Dependencies

To enable this port, select Quality factor and center frequency for the Filter
Specification and Specify from input port for the Quality Factor parameter.
Data Types: single | double

5 Blocks in Audio Toolbox

5-106

Output
Port_1 — Output signal
matrix

The Parametric EQ block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of filter
2 (default) | positive even scalar

Tunable: No

Filter specification — Specify parameters used to design filter
Bandwidth and center frequency (default) | Quality factor and center
frequency

• Bandwidth and center frequency –– Design the filter using Filter Bandwidth
(Hz), Center Frequency (Hz), and Peak Gain (dB).

• Quality factor and center frequency –– Design the filter using Center
Frequency (Hz), Peak Gain (dB), and Quality Factor.

Tunable: No

Center Frequency (Hz) — Center frequency of filter
11025 (default) | positive scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of
the input signal.

 Parametric EQ

5-107

To specify Center Frequency (Hz) from an input port, select Specify from input port
for the parameter.

Tunable: Yes

Filter Bandwidth (Hz) — Bandwidth of filter
2205 (default) | positive scalar in the range [0, max(fs/2, 20,000)]

Specify the filter bandwidth as a positive scalar that is less than or equal to half the
sample rate of the input signal or 20 kHz, whichever is larger.

To specify Filter Bandwidth (Hz) from an input port, select Specify from input port
for the parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center
frequency.

Quality Factor — Quality factor
5 (default) | scalar in the range [0.1, 20]

Specify the quality factor as a scalar in the range [0.1, 20].

To specify Quality Factor from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Quality factor and center
frequency.

Peak Gain (dB) — Peak or dip gain of filter
6.0206 (default) | scalar in the range [−30, 30]

Specify the peak gain in dB as a scalar in the range [−30, 30].

Tunable: Yes

5 Blocks in Audio Toolbox

5-108

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time, but the speed of the subsequent simulations is faster
compared to Interpreted execution.

Tunable: No

View filter response — Open plot to visualize magnitude response
button

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

 Parametric EQ

5-109

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of

the Audio Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
System Objects
multibandParametricEQ

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2019a

5 Blocks in Audio Toolbox

5-110

Reverberator
Add reverberation to audio signal
Library: Audio Toolbox / Effects

Description
The Reverberator block adds reverberation to mono or stereo audio signals. You can tune
parameters of the Reverberator block to mimic different acoustic environments.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
Port_1 — Output signal
matrix

The Reverberator block outputs a signal with the same data type as the input signal. The
size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

 Reverberator

5-111

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Pre-delay (s) — Pre-delay for reverberation
0 (default) | scalar in the range 0 to 1

Pre-delay for reverberation is the time between hearing direct sound and the first early
reflection. The value of Pre-delay (s) is proportional to the size of the room being
modeled.

Tunable: Yes

Highcut frequency (Hz) — Lowpass filter cutoff in the range 0 to (Sample
Rate)/2
20000 (default) | real positive scalar

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the
front of the reverberator structure. It prevents the application of reverberation to high-
frequency components of the input.

Tunable: Yes

Diffusion — Density of reverb tail
0.50 (default) | scalar in the range 0 to 1

Diffusion is proportional to the rate at which the reverb tail builds in density. Increasing
Diffusion pushes the reflections closer together, thickening the sound. Reducing
Diffusion creates more discrete echoes.

Tunable: Yes

Decay factor — Decay factor of reverb tail
0.50 (default) | scalar in the range 0 to 1

5 Blocks in Audio Toolbox

5-112

Decay factor is proportional to the time it takes for reflections to run out of energy. To
model a large room, use a long reverb tail (low decay factor). To model a small room, use
a short reverb tail (high decay factor).

Tunable: Yes

High frequency damping — High-frequency damping
0.0005 (default) | scalar in the range 0 to 1

High frequency damping is proportional to the attenuation of high frequencies in the
reverberation output. Setting High frequency damping to a large value makes high-
frequency reflections decay faster than low-frequency reflections.

Tunable: Yes

Wet/dry mix — Ratio of wet (reverberated) signal to dry (original) signal
0.3 (default) | scalar in the range 0 to 1

Wet/dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your
Reverberator block outputs.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

 Reverberator

5-113

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time and has simulation speed comparable to Code
generation. In this mode, you can debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is comparable to
Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

Zero-Crossing
Detection

no

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology
described in [1] and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

5 Blocks in Audio Toolbox

5-114

The description for the algorithm that follows is for a stereo input. A mono input is a
simplified case.

Stereo-to-Mono
A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning
A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the Pre-delay (s)
parameter determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1 − α
1 − αz−1 ,

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the Pre-delay (s) parameter.
• fs is the sampling frequency specified by the Inherit sample rate from input

parameter or the Input sample rate (Hz) parameter.

 Reverberator

5-115

Decorrelation
The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

where β is the coefficient specified by the Diffusion property and k is the delay as
follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank
The signal is fed into the tank, where it circulates to simulate the decay of a reverberation
tail.

5 Blocks in Audio Toolbox

5-116

The following description tracks the signal as it progresses through the top of the tank.
The signal progression through the bottom of the tank follows the same pattern, with
different delay specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from
the bottom of the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1 − βz−k

• β is the coefficient specified by the Diffusion parameter.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) ×

(sample rate). To account for fractional delay resulting from the modulating k,
allpass interpolation is used [2].

 Reverberator

5-117

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1 − φ
1 − φz−1

• φ is the coefficient specified by the High frequency damping parameter.
4 The signal is multiplied by a gain specified by the Decay factor parameter. The

signal then passes through an allpass filter:

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion parameter.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the
next iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the
tank is calculated as the signed sum of delay lines picked off at various points from the
tank. The summed output is multiplied by 0.6.

Wet/Dry Mix
The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1 − κ xR[n] + κx3R[n] ,

yL[n] = 1 − κ xL[n] + κx3L[n] ,

where the Wet/dry mix parameter determines κ.

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the

Audio Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of
the Audio Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

5 Blocks in Audio Toolbox

5-118

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
System Objects
reverberator

Introduced in R2016a

 Reverberator

5-119

Weighting Filter
Weighted frequency response filter
Library: Audio Toolbox / Filters

Description
The Weighting Filter block performs frequency-weighted filtering independently across
each input channel.

Ports

Input
Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output
Port_1 — Output signal
matrix

The Weighting Filter block outputs a signal with the same data type as the input signal.
The size of the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input
signal.

5 Blocks in Audio Toolbox

5-120

• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the
number of elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Weighting method — Type of frequency weighting
A-weighting (default) | C-weighting | K-weighting

See “A-Weighting” on page 5-123, “C-Weighting” on page 5-124, and “K-Weighting” on
page 5-124 for the definition of the weighting curves.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal.
When you clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run
a simulation, Simulink generates C code for the block. The C code is reused for
subsequent simulations, as long as the model does not change. This option requires
additional startup time but the speed of the subsequent simulations is faster than
Interpreted execution.

 Weighting Filter

5-121

• Interpreted execution –– Simulate model using the MATLAB interpreter. This
option shortens startup time but has a slower simulation speed compared to Code
generation. In this mode, you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Creates a mask for filter response
visualization
No mask (default) | Class 1 | Class 2

The mask attenuation limits are defined in the IEC 61672-1:2002 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Dependencies

To enable this parameter, set Weighting method to A-weighting or C-weighting.

Visualize filter response — Open plot to visualize magnitude response and
compliance mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Block Characteristics
Data Types double | single
Direct
Feedthrough

no

Multidimensional
Signals

no

Variable-Size
Signals

yes

5 Blocks in Audio Toolbox

5-122

Zero-Crossing
Detection

no

Definitions

A-Weighting
The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB
attenuation at 100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements of
noise level are increasingly found in sales literature for domestic appliances. In most
countries, the use of A-weighting is mandated for the protection of workers against noise-
induced deafness. The ISO and ICOA standards mandate A-weighting for all civil aircraft
noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for an A-weighting filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
Toolbox converts the specified poles and zeros to the digital domain using a bilinear
transform:

 Weighting Filter

5-123

C-Weighting
The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8
kHz. C-curves are used in sound level meters for sounds that are louder than sounds
intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2]
standard defines the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio
Toolbox converts the specified poles and zeros to the digital domain using a bilinear
transform:

K-Weighting
The K-weighting filter is used for loudness normalization in broadcast. It is composed of
two stages of filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

5 Blocks in Audio Toolbox

5-124

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients
are recomputed for nonstandard sample rates using the algorithm described in [4].

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards
Institute, 2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part
1: Specifications. First Edition. IEC 61672-1. 2002-2005.

 Weighting Filter

5-125

[3] International Telecommunication Union. Algorithms to measure audio programme
loudness and true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and
Evaluation of Autonomous Multi-track Fader Control." Paper presented at the
132nd Audio Engineering Society Convention, Budapest, Hungary, 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Loudness Meter | Octave Filter

System Objects
loudnessMeter | octaveFilter | weightingFilter

Introduced in R2016b

5 Blocks in Audio Toolbox

5-126

